-
Notifications
You must be signed in to change notification settings - Fork 157
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[cker] Introduce cker for avgpool #14086
Merged
Merged
Changes from 2 commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef __NNFW_CKER_TRAIN_OPERATION_AVGPOOL_H__ | ||
#define __NNFW_CKER_TRAIN_OPERATION_AVGPOOL_H__ | ||
|
||
#include "cker/Shape.h" | ||
#include "cker/Utils.h" | ||
#include "cker/eigen/Utils.h" | ||
|
||
#include <Eigen/Core> | ||
|
||
namespace nnfw | ||
{ | ||
namespace cker | ||
{ | ||
namespace train | ||
{ | ||
|
||
inline void AveragePool2DGrad(const PoolParams ¶ms, const Shape &incoming_shape, | ||
const float *incoming_data, const Shape &grad_shape, float *grad_data) | ||
{ | ||
assert(grad_shape.DimensionsCount() == 4); | ||
assert(incoming_shape.DimensionsCount() == 4); | ||
|
||
const int batches = MatchingDim(incoming_shape, 0, grad_shape, 0); | ||
const int grad_height = grad_shape.Dims(1); | ||
const int grad_width = grad_shape.Dims(2); | ||
const int incoming_height = incoming_shape.Dims(1); | ||
const int incoming_width = incoming_shape.Dims(2); | ||
const int stride_height = params.stride_height; | ||
const int stride_width = params.stride_width; | ||
|
||
// initialize grad_data | ||
std::fill(grad_data, grad_data + grad_shape.FlatSize(), 0.0); | ||
|
||
const auto incoming_mat = MapAsMatrixWithLastDimAsRows(incoming_data, incoming_shape); | ||
auto grad_mat = MapAsMatrixWithLastDimAsRows(grad_data, grad_shape); | ||
|
||
for (int b = 0; b < batches; ++b) | ||
{ | ||
for (int h = 0; h < incoming_height; ++h) | ||
{ | ||
for (int w = 0; w < incoming_width; ++w) | ||
{ | ||
// (h_start, h_end) * (w_start, w_end) is input range | ||
// that output is projected from. | ||
int h_start = h * stride_height - params.padding_values.height; | ||
int h_end = std::min(h_start + params.filter_height, grad_height); | ||
h_start = h_start < 0 ? 0 : h_start; | ||
|
||
int w_start = w * stride_width - params.padding_values.width; | ||
int w_end = std::min(w_start + params.filter_width, grad_width); | ||
w_start = w_start < 0 ? 0 : w_start; | ||
|
||
int count = (h_end - h_start) * (w_end - w_start); | ||
|
||
if (h_end <= 0 || w_end <= 0 || count <= 0 || h_start >= grad_height || | ||
w_start >= grad_width) | ||
continue; | ||
|
||
int incoming_offset = NodeOffset(b, h, w, incoming_height, incoming_width); | ||
for (int ph = h_start; ph < h_end; ++ph) | ||
{ | ||
for (int pw = w_start; pw < w_end; ++pw) | ||
{ | ||
int grad_offset = NodeOffset(b, ph, pw, grad_height, grad_width); | ||
grad_mat.col(grad_offset) += incoming_mat.col(incoming_offset) / count; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
} // namespace train | ||
} // namespace cker | ||
} // namespace nnfw | ||
|
||
#endif // __NNFW_CKER_TRAIN_OPERATION_AVGPOOL_H__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cker/eigen/Utils.h> | ||
#include <cker/operation/AveragePool.h> | ||
#include <cker/train/operation/AveragePool.h> | ||
#include <cker/Shape.h> | ||
|
||
#include <gtest/gtest.h> | ||
#include <vector> | ||
|
||
namespace | ||
{ | ||
using namespace nnfw::cker; | ||
|
||
template <typename T> class AvgPoolOpVerifier | ||
{ | ||
private: | ||
const PoolParams _op_params; | ||
const Shape _in_shape; | ||
const Shape _out_shape; | ||
|
||
public: | ||
AvgPoolOpVerifier(const nnfw::cker::PoolParams &op_params, const Shape &in_shape, | ||
const Shape &out_shape) | ||
: _op_params(op_params), _in_shape(in_shape), _out_shape(out_shape) | ||
{ | ||
} | ||
|
||
public: | ||
void verifyForward(const std::vector<T> input, const std::vector<T> expected_output, | ||
bool expect_eq = true) | ||
{ | ||
assert(input.size() == _in_shape.FlatSize()); | ||
assert(expected_output.size() == _out_shape.FlatSize()); | ||
|
||
std::vector<T> cacluated_output(_out_shape.FlatSize()); | ||
nnfw::cker::AveragePool<float>(_op_params, _in_shape, input.data(), _out_shape, | ||
cacluated_output.data()); | ||
|
||
if (expect_eq) | ||
EXPECT_EQ(expected_output, cacluated_output); | ||
else | ||
EXPECT_NE(expected_output, cacluated_output); | ||
} | ||
|
||
void verifyBackward(const std::vector<T> incoming_data, const std::vector<T> expected_grad_data, | ||
bool expect_eq = true) | ||
{ | ||
assert(incoming_data.size() == _out_shape.FlatSize()); | ||
assert(expected_grad_data.size() == _in_shape.FlatSize()); | ||
|
||
std::vector<T> calcuated_grad(_in_shape.FlatSize()); | ||
nnfw::cker::train::AveragePool2DGrad(_op_params, _out_shape, incoming_data.data(), _in_shape, | ||
calcuated_grad.data()); | ||
|
||
if (expect_eq) | ||
{ | ||
for (size_t i = 0; i < expected_grad_data.size(); i++) | ||
{ | ||
EXPECT_FLOAT_EQ(expected_grad_data[i], calcuated_grad[i]); | ||
} | ||
} | ||
|
||
else | ||
EXPECT_NE(expected_grad_data, calcuated_grad); | ||
} | ||
}; | ||
|
||
} // namespace | ||
|
||
TEST(CKer_Operation, AveragePool2D) | ||
{ | ||
// Depth 1 case | ||
{ | ||
nnfw::cker::PoolParams op_param; | ||
{ | ||
op_param.stride_height = 1; | ||
op_param.stride_width = 1; | ||
op_param.filter_height = 2; | ||
op_param.filter_width = 2; | ||
op_param.padding_values.height = 0; | ||
op_param.padding_values.width = 0; | ||
op_param.float_activation_max = std::numeric_limits<float>::max(); | ||
op_param.float_activation_min = std::numeric_limits<float>::lowest(); | ||
} | ||
nnfw::cker::Shape in = {1, 3, 3, 1}; | ||
nnfw::cker::Shape out = {1, 2, 2, 1}; | ||
|
||
AvgPoolOpVerifier<float> verifier(op_param, in, out); | ||
|
||
/** | ||
* input : output: | ||
* | ||
* 10(0) 15(1) 2(2) | ||
* 7(3) 8(4) 9(5) - (forward) -> 10(4) 8.5(4) | ||
* 10(6) 1(7) 0(8) 6.5(4) 4.5(4) | ||
*/ | ||
|
||
std::vector<float> input = {10, 15, 2, 7, 8, 9, 10, 1, 0}; | ||
std::vector<float> expected_output = {10, 8.5, 6.5, 4.5}; | ||
verifier.verifyForward(input, expected_output); | ||
|
||
/** | ||
* output_deriv: input_deriv: | ||
* | ||
* | ||
* 0.4 0.4 0.1 0.2 0.1 | ||
* 0.4 0.4 - (backward) -> 0.2 0.4 0.2 | ||
* 0.1 0.2 0.1 | ||
*/ | ||
|
||
std::vector<float> output_deriv = {0.4, 0.4, 0.4, 0.4}; | ||
std::vector<float> expected_input_deriv = {0.1, 0.2, 0.1, 0.2, 0.4, 0.2, 0.1, 0.2, 0.1}; | ||
verifier.verifyBackward(output_deriv, expected_input_deriv); | ||
} | ||
|
||
// Depth 2 case | ||
{ | ||
nnfw::cker::PoolParams op_param; | ||
{ | ||
op_param.stride_height = 1; | ||
op_param.stride_width = 1; | ||
op_param.filter_height = 3; | ||
op_param.filter_width = 3; | ||
op_param.padding_values.height = 0; | ||
op_param.padding_values.width = 0; | ||
op_param.float_activation_max = std::numeric_limits<float>::max(); | ||
op_param.float_activation_min = std::numeric_limits<float>::lowest(); | ||
} | ||
nnfw::cker::Shape in = {1, 3, 3, 2}; | ||
nnfw::cker::Shape out = {1, 1, 1, 2}; | ||
|
||
AvgPoolOpVerifier<float> verifier(op_param, in, out); | ||
|
||
/** | ||
* depth[0] | ||
* input : output: | ||
* | ||
* 10(0) 15(1) 2(2) | ||
* 10(3) 12(4) 17(5) -(forward)-> 16(0) | ||
* 50(6) 30(7) -2(8) | ||
* | ||
* | ||
* depth[1] | ||
* input: output: | ||
* | ||
* -1(0) 2(1) 3(2) | ||
* 8(3) 9(4) 2(5) -(forward)-> 4(0) | ||
* 4(6) 2(7) 7(8) | ||
*/ | ||
|
||
std::vector<float> input(in.FlatSize()); | ||
auto input_mat = MapAsMatrixWithLastDimAsRows(input.data(), in); | ||
input_mat << /* depth0 */ 10, 15, 2, 10, 12, 17, 50, 30, -2, | ||
/* depth1 */ -1, 2, 3, 8, 9, 2, 4, 2, 7; | ||
std::vector<float> expected_output = {16, 4}; | ||
verifier.verifyForward(input, expected_output); | ||
|
||
/** | ||
* depth[0] | ||
* ouput_deriv: input_deriv: | ||
* | ||
* 0.02 0.02 0.02 | ||
* 0.18 -(backward)-> 0.02 0.02 0.02 | ||
* 0.02 0.02 0.02 | ||
* | ||
* | ||
* depth[1] | ||
* output_deriv: input_deriv: | ||
* 0.04 0.04 0.04 | ||
* 0.36 -(backward)-> 0.04 0.04 0.04 | ||
* 0.04 0.04 0.04 | ||
*/ | ||
|
||
std::vector<float> output_deriv = {0.18, 0.36}; | ||
std::vector<float> expected_input_deriv(in.FlatSize()); | ||
auto input_deriv_mat = MapAsMatrixWithLastDimAsRows(expected_input_deriv.data(), in); | ||
input_deriv_mat << /* depth0 */ 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, | ||
/* depth1 */ 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04; | ||
verifier.verifyBackward(output_deriv, expected_input_deriv); | ||
} | ||
} | ||
|
||
TEST(CKer_Operation, neg_AveragePoolInvalidExpectedValue) | ||
{ | ||
// Invalid expected value | ||
{ | ||
nnfw::cker::PoolParams op_param; | ||
{ | ||
op_param.stride_height = 1; | ||
op_param.stride_width = 1; | ||
op_param.filter_height = 2; | ||
op_param.filter_width = 2; | ||
op_param.padding_values.height = 0; | ||
op_param.padding_values.width = 0; | ||
op_param.float_activation_max = std::numeric_limits<float>::max(); | ||
op_param.float_activation_min = std::numeric_limits<float>::lowest(); | ||
} | ||
nnfw::cker::Shape in = {1, 2, 2, 1}; | ||
nnfw::cker::Shape out = {1, 1, 1, 1}; | ||
|
||
AvgPoolOpVerifier<float> verifier(op_param, in, out); | ||
|
||
std::vector<float> input = {0, 0, 0, 0}; | ||
std::vector<float> expected_output = {-1}; | ||
|
||
verifier.verifyForward(input, expected_output, false); | ||
} | ||
|
||
// Invalid expected value | ||
{ | ||
nnfw::cker::PoolParams op_param; | ||
{ | ||
op_param.stride_height = 2; | ||
op_param.stride_width = 2; | ||
op_param.filter_height = 2; | ||
op_param.filter_width = 2; | ||
op_param.padding_values.height = 1; | ||
op_param.padding_values.width = 1; | ||
op_param.float_activation_max = std::numeric_limits<float>::max(); | ||
op_param.float_activation_min = std::numeric_limits<float>::lowest(); | ||
} | ||
|
||
nnfw::cker::Shape in = {1, 2, 2, 1}; | ||
nnfw::cker::Shape out = {1, 2, 2, 1}; | ||
|
||
AvgPoolOpVerifier<float> verifier(op_param, in, out); | ||
|
||
std::vector<float> input = {0, 0, 0, 0}; | ||
std::vector<float> expected_output = {0, 0, 0, 0}; | ||
verifier.verifyForward(input, expected_output); | ||
|
||
std::vector<float> output_deriv = {0.1, 0.1, 0.1, 0.2}; | ||
std::vector<float> expected_input_deriv = {0.1, 0.1, 0.1, 0.1}; | ||
verifier.verifyBackward(output_deriv, expected_input_deriv, false); | ||
} | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Same to the following two occurrences
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Updated!