Skip to content

11 DA/DS-projects from different industries done in Jupyter Notebook on Python during 6+ months of hands-on course by Yandex School for Data Analytics in 2022 - my portfolio in DA/DS-programming for CV

Notifications You must be signed in to change notification settings

SanSanychSeva/my-portfolio-in-DA-for-CV-in-RUS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

my-portfolio-in-DA-for-CV-in-RUS

ENGLISH FOLLOWS

Данный репозиторий включает набор проектов в Jupyter Notebook, выполненных мной самостоятельно во время 6-месячных онлайн курсов Яндекс.Практикум по Аналитике Данных в 2022 году.

Целью создания данного репозитория является сбор Портфолио для поиска новых позиций в области Аналитики Больших Данных. Ссылка на данный репозиторий присутствует в моих резюме на сайтах кадровых агенств.

Язык проектов - Русский.

Язык программирования - Python 3.

Используемые внешние библиотеки - NumPy, Pandas, Matplotlib, Seaborn, SciPy, Plotly & Dash, SQLalchemy, GetOpt, Requests, JSON, BeautifulSoup, ScikitLearn(ML)

Краткое описание состава данного репозитория приведено в таблице ниже (после английской версии текста)

Совместимость версий библиотек

Файлы Jupyter Notebook были протестированы в окружении Anaconda - конфигурационный файл Anaconda добавлен в этот проект здесь.

ENGLISH:

This multiple projects repository keeps Jupyter Notebook (JN) projects fully done by me during 6 months of Data Analyst hands-on courses by Yandex.Practicum in 2022.

Purpose of this repository: to collect the best examples of my skills in Data Analytics - as a portfolio for my job hunting CVs.

Language of the markdown text in the JN-files: Russian.

Language of the code in the JN-files: Python 3.

Python external libraries used in the JN-files: NumPy, Pandas, Matplotlib, Seaborn, SciPy, Plotly & Dash, SQLalchemy, GetOpt, Requests, JSON, BeautifulSoup, ScikitLearn(ML)

Compatibility issues

the Jupyter Notebook files in this project were run OK in the Anaconda environment - its backup is also provided in this project here.

Repository Content / Проектный состав данного репозитория

# Project (dir) name Project description Technology stack Project dir link
01 DAproj02_-_credit-story-light-study_for-bank-loans-clients EDA for bank credit history dataset to establish relation between family status and in-time credit return with the goal to build creditability scoring for new clients Python, Pandas DAproj02
02 DAproj03_-_real-estate-market-study_for-appartments-in-SPB EDA for real-estate for-sales announcements dataset to establish relation between price per square meter and other parameters of apartments with the goal to build calculator of marketing price for apartments in Saint Petersburg Python, Pandas DAproj03
03 DAproj04_-_EDA-and-hyposesis-check_for_telecom_CSP-fariffs EDA and Hypothesis check for datasets with new tariff plans testing by CSP to select more profitable offer with the goal of revenue raise Python, NumPy, Pandas, Matplotlib, SciPy DAproj04
04 DAproj05_-_video-games-market-EDA_for-gameshop_salesplan EDA and Hypothesis check for videogames sales history dataset to find influence of games parameters onto market success with the goal to predict next year sales figures Python, NumPy, Pandas, Matplotlib, SciPy, Seaborn DAproj05
05 DAproj07_-_biz-metrics-EDA_for-global-shop-negative-PnL Business metrics investigation based on PnL datasets (orders, costs, activity) to find reasons of profitability degradation with the goal to suggest improvement plan Python, NumPy, Pandas, Matplotlib, SciPy, Seaborn DAproj07
06 DAproj08_-_e2e-AB-test_for-revenue-grow-hypothesis_check A/B test results analyses with the goal to make statistically reliable conclusions about tested hypothesis and to decide if to stop or continue the testing Python, NumPy, Pandas, Matplotlib, SciPy DAproj08
07 DAproj09_-_GtM-business-consulting_for-new-restaurant Business presentation for sponsors of a new startup, based on market research and EDA of Moscow restaurants dataset Python, NumPy, Pandas, Matplotlib, Seaborn, MS Power Point DAproj09
08 DAproj10_-_sales-funnel-AB-test-analysis_for-internet-shop To check ground for the expectations of marketing for improvements and to clear fears of management about negative influence of new changes on clients of a food internet shop - based on A/B test results datasets Python, NumPy, Pandas, Matplotlib, Seaborn DAproj10
09 DAproj11_-_automated-dashboard_for-users-visits-to-ISP-site e2e automation of data collection and pre-processing pipeline for marketing dashboard also developed here. Link to dashboard Pandas, SQLalchemy, Tableau Public DAproj11
10 DAproj12_-_ML-in-churn-prediction_for-gym-clients application of ML tools to churn prediction for gym clients, prediction-model training and client clustering for target group detection in churn prevention Python, Pandas, SciPy, Matplotlib, Seaborn, Sklearn DAproj12
11 DAproj13_-_telecomEDA-internetABtest-SQL_graduation-diploma all Data Analytics skills got in half-year courses for Data Analytics by Yandex.Practicum and Link to dashboard Python, Pandas, Matplotlib, Seaborn, SciPy, Tableau Public, SQL DAproj13

About

11 DA/DS-projects from different industries done in Jupyter Notebook on Python during 6+ months of hands-on course by Yandex School for Data Analytics in 2022 - my portfolio in DA/DS-programming for CV

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published