-
-
Notifications
You must be signed in to change notification settings - Fork 211
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add utilities and tests for disturbance modeling
- Loading branch information
1 parent
083a639
commit 31059f4
Showing
4 changed files
with
265 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
#= | ||
This file implements and tests a typical workflow for state estimation with disturbance models | ||
The primary subject of the tests is the analysis-point features and the | ||
analysis-point specific method for `generate_control_function`. | ||
=# | ||
using ModelingToolkit, OrdinaryDiffEq, LinearAlgebra, Test | ||
using ModelingToolkitStandardLibrary.Mechanical.Rotational | ||
using ModelingToolkitStandardLibrary.Blocks | ||
using ModelingToolkit: connect | ||
# using Plots | ||
|
||
using ModelingToolkit: t_nounits as t, D_nounits as D | ||
|
||
indexof(sym, syms) = findfirst(isequal(sym), syms) | ||
|
||
## Build the system model ====================================================== | ||
@mtkmodel SystemModel begin | ||
@parameters begin | ||
m1 = 1 | ||
m2 = 1 | ||
k = 10 # Spring stiffness | ||
c = 3 # Damping coefficient | ||
end | ||
@components begin | ||
inertia1 = Inertia(; J = m1, phi = 0, w = 0) | ||
inertia2 = Inertia(; J = m2, phi = 0, w = 0) | ||
spring = Spring(; c = k) | ||
damper = Damper(; d = c) | ||
torque = Torque(use_support = false) | ||
end | ||
@equations begin | ||
connect(torque.flange, inertia1.flange_a) | ||
connect(inertia1.flange_b, spring.flange_a, damper.flange_a) | ||
connect(inertia2.flange_a, spring.flange_b, damper.flange_b) | ||
end | ||
end | ||
|
||
@mtkmodel ModelWithInputs begin | ||
@components begin | ||
input_signal = Blocks.Sine(frequency = 1, amplitude = 1) | ||
disturbance_signal1 = Blocks.Constant(k = 0) | ||
disturbance_signal2 = Blocks.Constant(k = 0) | ||
disturbance_torque1 = Torque(use_support = false) | ||
disturbance_torque2 = Torque(use_support = false) | ||
system_model = SystemModel() | ||
end | ||
@equations begin | ||
connect(input_signal.output, :u, system_model.torque.tau) | ||
connect(disturbance_signal1.output, :d1, disturbance_torque1.tau) | ||
connect(disturbance_signal2.output, :d2, disturbance_torque2.tau) | ||
connect(disturbance_torque1.flange, system_model.inertia1.flange_b) | ||
connect(disturbance_torque2.flange, system_model.inertia2.flange_b) | ||
end | ||
end | ||
|
||
@named model = ModelWithInputs() # Model with load disturbance | ||
ssys = structural_simplify(model) | ||
prob = ODEProblem(ssys, [], (0.0, 10.0)) | ||
sol = solve(prob, Tsit5()) | ||
plot(sol) | ||
|
||
## | ||
using ControlSystemsBase | ||
# cmodel = complete(model) | ||
# P = cmodel.system_model | ||
# lsys = named_ss( | ||
# model, [:u, :d1], [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w]) | ||
|
||
## | ||
# If we now want to add a disturbance model, we cannot do that since we have already connected a constant to the disturbance input. We have also already used the name `d` for an analysis point, but that might not be an issue since we create an outer model and get a new namespace. | ||
|
||
s = tf("s") | ||
dist(; name) = ODESystem(1 / s; name) | ||
|
||
@mtkmodel SystemModelWithDisturbanceModel begin | ||
@components begin | ||
input_signal = Blocks.Sine(frequency = 1, amplitude = 1) | ||
disturbance_signal1 = Blocks.Constant(k = 0) | ||
disturbance_signal2 = Blocks.Constant(k = 0) | ||
disturbance_torque1 = Torque(use_support = false) | ||
disturbance_torque2 = Torque(use_support = false) | ||
disturbance_model = dist() | ||
system_model = SystemModel() | ||
end | ||
@equations begin | ||
connect(input_signal.output, :u, system_model.torque.tau) | ||
connect(disturbance_signal1.output, :d1, disturbance_model.input) | ||
connect(disturbance_model.output, disturbance_torque1.tau) | ||
connect(disturbance_signal2.output, :d2, disturbance_torque2.tau) | ||
connect(disturbance_torque1.flange, system_model.inertia1.flange_b) | ||
connect(disturbance_torque2.flange, system_model.inertia2.flange_b) | ||
end | ||
end | ||
|
||
@named model_with_disturbance = SystemModelWithDisturbanceModel() | ||
# ssys = structural_simplify(open_loop(model_with_disturbance, :d)) # Open loop worked, but it's a bit awkward that we have to use it here | ||
# lsys2 = named_ss(model_with_disturbance, [:u, :d1], | ||
# [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w]) | ||
ssys = structural_simplify(model_with_disturbance) | ||
prob = ODEProblem(ssys, [], (0.0, 10.0)) | ||
sol = solve(prob, Tsit5()) | ||
@test SciMLBase.successful_retcode(sol) | ||
# plot(sol) | ||
|
||
## | ||
# Now we only have an integrating disturbance affecting inertia1, what if we want both integrating and direct Gaussian? We'd need a "PI controller" disturbancemodel. If we add the disturbance model (s+1)/s we get the integrating and non-integrating noises being correlated which is fine, it reduces the dimensions of the sigma point by 1. | ||
|
||
dist3(; name) = ODESystem(ss(1 + 10 / s, balance = false); name) | ||
|
||
@mtkmodel SystemModelWithDisturbanceModel begin | ||
@components begin | ||
input_signal = Blocks.Sine(frequency = 1, amplitude = 1) | ||
disturbance_signal1 = Blocks.Constant(k = 0) | ||
disturbance_signal2 = Blocks.Constant(k = 0) | ||
disturbance_torque1 = Torque(use_support = false) | ||
disturbance_torque2 = Torque(use_support = false) | ||
disturbance_model = dist3() | ||
system_model = SystemModel() | ||
|
||
y = Blocks.Add() | ||
angle_sensor = AngleSensor() | ||
output_disturbance = Blocks.Constant(k = 0) | ||
end | ||
@equations begin | ||
connect(input_signal.output, :u, system_model.torque.tau) | ||
connect(disturbance_signal1.output, :d1, disturbance_model.input) | ||
connect(disturbance_model.output, disturbance_torque1.tau) | ||
connect(disturbance_signal2.output, :d2, disturbance_torque2.tau) | ||
connect(disturbance_torque1.flange, system_model.inertia1.flange_b) | ||
connect(disturbance_torque2.flange, system_model.inertia2.flange_b) | ||
|
||
connect(system_model.inertia1.flange_b, angle_sensor.flange) | ||
connect(angle_sensor.phi, y.input1) | ||
connect(output_disturbance.output, :dy, y.input2) | ||
end | ||
end | ||
|
||
@named model_with_disturbance = SystemModelWithDisturbanceModel() | ||
# ssys = structural_simplify(open_loop(model_with_disturbance, :d)) # Open loop worked, but it's a bit awkward that we have to use it here | ||
# lsys3 = named_ss(model_with_disturbance, [:u, :d1], | ||
# [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w]) | ||
ssys = structural_simplify(model_with_disturbance) | ||
prob = ODEProblem(ssys, [], (0.0, 10.0)) | ||
sol = solve(prob, Tsit5()) | ||
@test SciMLBase.successful_retcode(sol) | ||
# plot(sol) | ||
|
||
## Generate function for an augmented Unscented Kalman Filter ===================== | ||
# temp = open_loop(model_with_disturbance, :d) | ||
outputs = [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w] | ||
(f_oop1, f_ip), x_sym, p_sym, io_sys = ModelingToolkit.generate_control_function( | ||
model_with_disturbance, [:u], [:d1, :d2, :dy], split = false) | ||
|
||
(f_oop2, f_ip2), x_sym, p_sym, io_sys = ModelingToolkit.generate_control_function( | ||
model_with_disturbance, [:u], [:d1, :d2, :dy], | ||
disturbance_argument = true, split = false) | ||
|
||
measurement = ModelingToolkit.build_explicit_observed_function( | ||
io_sys, outputs, inputs = ModelingToolkit.inputs(io_sys)[1:1]) | ||
measurement2 = ModelingToolkit.build_explicit_observed_function( | ||
io_sys, [io_sys.y.output.u], inputs = ModelingToolkit.inputs(io_sys)[1:1], | ||
disturbance_inputs = ModelingToolkit.inputs(io_sys)[2:end], | ||
disturbance_argument = true) | ||
|
||
op = ModelingToolkit.inputs(io_sys) .=> 0 | ||
x0, p = ModelingToolkit.get_u0_p(io_sys, op, op) | ||
x = zeros(5) | ||
u = zeros(1) | ||
d = zeros(3) | ||
@test f_oop2(x, u, p, t, d) == zeros(5) | ||
@test measurement(x, u, p, 0.0) == [0, 0, 0, 0] | ||
@test measurement2(x, u, p, 0.0, d) == [0] | ||
|
||
# Add to the integrating disturbance input | ||
d = [1, 0, 0] | ||
@test sort(f_oop2(x, u, p, 0.0, d)) == [0, 0, 0, 1, 1] # Affects disturbance state and one velocity | ||
@test measurement2(x, u, p, 0.0, d) == [0] | ||
|
||
d = [0, 1, 0] | ||
@test sort(f_oop2(x, u, p, 0.0, d)) == [0, 0, 0, 0, 1] # Affects one velocity | ||
@test measurement(x, u, p, 0.0) == [0, 0, 0, 0] | ||
@test measurement2(x, u, p, 0.0, d) == [0] | ||
|
||
d = [0, 0, 1] | ||
@test sort(f_oop2(x, u, p, 0.0, d)) == [0, 0, 0, 0, 0] # Affects nothing | ||
@test measurement(x, u, p, 0.0) == [0, 0, 0, 0] | ||
@test measurement2(x, u, p, 0.0, d) == [1] # We have now disturbed the output | ||
|
||
## Further downstream tests that the functions generated above actually have the properties required to use for state estimation | ||
# | ||
# using LowLevelParticleFilters, SeeToDee | ||
# Ts = 0.001 | ||
# discrete_dynamics = SeeToDee.Rk4(f_oop2, Ts) | ||
# nx = length(x_sym) | ||
# nu = 1 | ||
# nw = 2 | ||
# ny = length(outputs) | ||
# R1 = Diagonal([1e-5, 1e-5]) | ||
# R2 = 0.1 * I(ny) | ||
# op = ModelingToolkit.inputs(io_sys) .=> 0 | ||
# x0, p = ModelingToolkit.get_u0_p(io_sys, op, op) | ||
# d0 = LowLevelParticleFilters.SimpleMvNormal(x0, 10.0I(nx)) | ||
# measurement_model = UKFMeasurementModel{Float64, false, false}(measurement, R2; nx, ny) | ||
# kf = UnscentedKalmanFilter{false, false, true, false}( | ||
# discrete_dynamics, measurement_model, R1, d0; nu, Ts, p) | ||
|
||
# tvec = 0:Ts:sol.t[end] | ||
# u = vcat.(Array(sol(tvec, idxs = P.torque.tau.u))) | ||
# y = collect.(eachcol(Array(sol(tvec, idxs = outputs)) .+ 1e-2 .* randn.())) | ||
|
||
# inds = 1:5805 | ||
# res = forward_trajectory(kf, u, y) | ||
|
||
# plot(res, size = (1000, 1000)); | ||
# plot!(sol, idxs = x_sym, sp = (1:nx)', l = :dash); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters