-
-
Notifications
You must be signed in to change notification settings - Fork 211
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2361 from SciML/baggepinnen-patch-4
Handle dummy derivatives in `linearization_function`
- Loading branch information
Showing
3 changed files
with
167 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
using ModelingToolkit | ||
using ModelingToolkitStandardLibrary | ||
using ModelingToolkitStandardLibrary.Blocks | ||
using OrdinaryDiffEq | ||
using Test | ||
using ControlSystemsMTK: tf, ss, get_named_sensitivity, get_named_comp_sensitivity | ||
|
||
# ============================================================================== | ||
## Mixing tank | ||
# This tests a common workflow in control engineering, the use of an inverse-based | ||
# feedforward model. Such a model differentiates "inputs", exercising the dummy-derivative functionality of ModelingToolkit. We also test linearization and computation of sensitivity functions | ||
# for such models. | ||
# ============================================================================== | ||
|
||
connect = ModelingToolkit.connect; | ||
@parameters t; | ||
D = Differential(t); | ||
rc = 0.25 # Reference concentration | ||
|
||
@mtkmodel MixingTank begin | ||
@parameters begin | ||
c0 = 0.8, [description = "Nominal concentration"] | ||
T0 = 308.5, [description = "Nominal temperature"] | ||
a1 = 0.2674 | ||
a21 = 1.815 | ||
a22 = 0.4682 | ||
b = 1.5476 | ||
k0 = 1.05e14 | ||
ϵ = 34.2894 | ||
end | ||
|
||
@variables begin | ||
gamma(t), [description = "Reaction speed"] | ||
xc(t) = c0, [description = "Concentration"] | ||
xT(t) = T0, [description = "Temperature"] | ||
xT_c(t) = T0, [description = "Cooling temperature"] | ||
end | ||
|
||
@components begin | ||
T_c = RealInput() | ||
c = RealOutput() | ||
T = RealOutput() | ||
end | ||
|
||
begin | ||
τ0 = 60 | ||
wk0 = k0 / c0 | ||
wϵ = ϵ * T0 | ||
wa11 = a1 / τ0 | ||
wa12 = c0 / τ0 | ||
wa13 = c0 * a1 / τ0 | ||
wa21 = a21 / τ0 | ||
wa22 = a22 * T0 / τ0 | ||
wa23 = T0 * (a21 - b) / τ0 | ||
wb = b / τ0 | ||
end | ||
@equations begin | ||
gamma ~ xc * wk0 * exp(-wϵ / xT) | ||
D(xc) ~ -wa11 * xc - wa12 * gamma + wa13 | ||
D(xT) ~ -wa21 * xT + wa22 * gamma + wa23 + wb * xT_c | ||
|
||
xc ~ c.u | ||
xT ~ T.u | ||
xT_c ~ T_c.u | ||
end | ||
end | ||
|
||
begin | ||
Ftf = tf(1, [(100), 1])^3 | ||
Fss = ss(Ftf) | ||
|
||
"Compute initial state that yields y0 as output" | ||
function init_filter(y0) | ||
(; A, B, C, D) = Fss | ||
Fx0 = -A \ B * y0 | ||
@assert C * Fx0≈[y0] "C*Fx0*y0 ≈ y0 failed, got $(C*Fx0*y0) ≈ $(y0)]" | ||
Fx0 | ||
end | ||
|
||
# Create an MTK-compatible constructor | ||
RefFilter(; y0, name) = ODESystem(Fss; name, x0 = init_filter(y0)) | ||
end | ||
@mtkmodel InverseControlledTank begin | ||
begin | ||
c0 = 0.8 # "Nominal concentration | ||
T0 = 308.5 # "Nominal temperature | ||
x10 = 0.42 | ||
x20 = 0.01 | ||
u0 = -0.0224 | ||
|
||
c_start = c0 * (1 - x10) # Initial concentration | ||
T_start = T0 * (1 + x20) # Initial temperature | ||
c_high_start = c0 * (1 - 0.72) # Reference concentration | ||
T_c_start = T0 * (1 + u0) # Initial cooling temperature | ||
end | ||
@components begin | ||
ref = Constant(k = 0.25) # Concentration reference | ||
ff_gain = Gain(k = 1) # To allow turning ff off | ||
controller = PI(gainPI.k = 10, T = 500) | ||
tank = MixingTank(xc = c_start, xT = T_start, c0 = c0, T0 = T0) | ||
inverse_tank = MixingTank(xc = c_start, xT = T_start, c0 = c0, T0 = T0) | ||
feedback = Feedback() | ||
add = Add() | ||
filter = RefFilter(y0 = c_start) # Initialize filter states to the initial concentration | ||
noise_filter = FirstOrder(k = 1, T = 1, x = T_start) | ||
# limiter = Gain(k=1) | ||
limiter = Limiter(y_max = 370, y_min = 250) # Saturate the control input | ||
end | ||
@equations begin | ||
connect(ref.output, :r, filter.input) | ||
connect(filter.output, inverse_tank.c) | ||
|
||
connect(inverse_tank.T_c, ff_gain.input) | ||
connect(ff_gain.output, :uff, limiter.input) | ||
connect(limiter.output, add.input1) | ||
|
||
connect(controller.ctr_output, :u, add.input2) | ||
|
||
#connect(add.output, :u_tot, limiter.input) | ||
#connect(limiter.output, :v, tank.T_c) | ||
|
||
connect(add.output, :u_tot, tank.T_c) | ||
|
||
connect(inverse_tank.T, feedback.input1) | ||
|
||
connect(tank.T, :y, noise_filter.input) | ||
|
||
connect(noise_filter.output, feedback.input2) | ||
connect(feedback.output, :e, controller.err_input) | ||
end | ||
end; | ||
@named model = InverseControlledTank() | ||
ssys = structural_simplify(model) | ||
cm = complete(model) | ||
|
||
op = Dict(D(cm.inverse_tank.xT) => 1, | ||
cm.tank.xc => 0.65) | ||
tspan = (0.0, 1000.0) | ||
prob = ODEProblem(ssys, op, tspan) | ||
sol = solve(prob, Rodas5P()) | ||
|
||
@test SciMLBase.successful_retcode(sol) | ||
|
||
# plot(sol, idxs=[model.tank.xc, model.tank.xT, model.controller.ctr_output.u], layout=3, sp=[1 2 3]) | ||
# hline!([prob[cm.ref.k]], label="ref", sp=1) | ||
|
||
@test sol(tspan[2], idxs = cm.tank.xc)≈prob[cm.ref.k] atol=1e-2 # Test that the inverse model led to the correct reference | ||
|
||
Sf, simplified_sys = Blocks.get_sensitivity_function(model, :y) # This should work without providing an operating opint containing a dummy derivative | ||
x, p = ModelingToolkit.get_u0_p(simplified_sys, op) | ||
matrices1 = Sf(x, p, 0) | ||
matrices2, _ = Blocks.get_sensitivity(model, :y; op) # Test that we get the same result when calling the higher-level API | ||
@test matrices1.f_x ≈ matrices2.A[1:7, 1:7] | ||
nsys = get_named_sensitivity(model, :y; op) # Test that we get the same result when calling an even higher-level API | ||
@test matrices2.A ≈ nsys.A | ||
|
||
# Test the same thing for comp sensitivities | ||
|
||
Sf, simplified_sys = Blocks.get_comp_sensitivity_function(model, :y) # This should work without providing an operating opint containing a dummy derivative | ||
x, p = ModelingToolkit.get_u0_p(simplified_sys, op) | ||
matrices1 = Sf(x, p, 0) | ||
matrices2, _ = Blocks.get_comp_sensitivity(model, :y; op) # Test that we get the same result when calling the higher-level API | ||
@test matrices1.f_x ≈ matrices2.A[1:7, 1:7] | ||
nsys = get_named_comp_sensitivity(model, :y; op) # Test that we get the same result when calling an even higher-level API | ||
@test matrices2.A ≈ nsys.A |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters