-
-
Notifications
You must be signed in to change notification settings - Fork 211
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2337 from TorkelE/bif_extension
Improve BifurcationKit extension
- Loading branch information
Showing
2 changed files
with
207 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,35 +1,136 @@ | ||
using BifurcationKit, ModelingToolkit, Test | ||
|
||
# Checks pitchfork diagram and that there are the correct number of branches (a main one and two children) | ||
# Simple pitchfork diagram, compares solution to native BifurcationKit, checks they are identical. | ||
# Checks using `jac=false` option. | ||
let | ||
# Creates model. | ||
@variables t x(t) y(t) | ||
@parameters μ α | ||
eqs = [0 ~ μ * x - x^3 + α * y, | ||
0 ~ -y] | ||
@named nsys = NonlinearSystem(eqs, [x, y], [μ, α]) | ||
|
||
# Creates BifurcationProblem | ||
bif_par = μ | ||
p_start = [μ => -1.0, α => 1.0] | ||
u0_guess = [x => 1.0, y => 1.0] | ||
plot_var = x | ||
|
||
using BifurcationKit | ||
bprob = BifurcationProblem(nsys, | ||
u0_guess, | ||
p_start, | ||
bif_par; | ||
plot_var = plot_var, | ||
jac = false) | ||
|
||
# Conputes bifurcation diagram. | ||
p_span = (-4.0, 6.0) | ||
opts_br = ContinuationPar(max_steps = 500, p_min = p_span[1], p_max = p_span[2]) | ||
bif_dia = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside = true) | ||
|
||
# Computes bifurcation diagram using BifurcationKit directly (without going through MTK). | ||
function f_BK(u, p) | ||
x, y = u | ||
μ, α = p | ||
return [μ * x - x^3 + α * y, -y] | ||
end | ||
bprob_BK = BifurcationProblem(f_BK, | ||
[1.0, 1.0], | ||
[-1.0, 1.0], | ||
(@lens _[1]); | ||
record_from_solution = (x, p) -> x[1]) | ||
bif_dia_BK = bifurcationdiagram(bprob_BK, | ||
PALC(), | ||
2, | ||
(args...) -> opts_br; | ||
bothside = true) | ||
|
||
# Compares results. | ||
@test getfield.(bif_dia.γ.branch, :x) ≈ getfield.(bif_dia_BK.γ.branch, :x) | ||
@test getfield.(bif_dia.γ.branch, :param) ≈ getfield.(bif_dia_BK.γ.branch, :param) | ||
@test bif_dia.γ.specialpoint[1].x == bif_dia_BK.γ.specialpoint[1].x | ||
@test bif_dia.γ.specialpoint[1].param == bif_dia_BK.γ.specialpoint[1].param | ||
@test bif_dia.γ.specialpoint[1].type == bif_dia_BK.γ.specialpoint[1].type | ||
end | ||
|
||
# Lotka–Volterra model, checks exact position of bifurcation variable and bifurcation points. | ||
# Checks using ODESystem input. | ||
let | ||
# Creates a Lotka–Volterra model. | ||
@parameters α a b | ||
@variables t x(t) y(t) z(t) | ||
D = Differential(t) | ||
eqs = [D(x) ~ -x + a * y + x^2 * y, | ||
D(y) ~ b - a * y - x^2 * y] | ||
@named sys = ODESystem(eqs) | ||
|
||
# Creates BifurcationProblem | ||
bprob = BifurcationProblem(sys, | ||
[x => 1.5, y => 1.0], | ||
[a => 0.1, b => 0.5], | ||
b; | ||
plot_var = x) | ||
|
||
# Computes bifurcation diagram. | ||
p_span = (0.0, 2.0) | ||
opt_newton = NewtonPar(tol = 1e-9, max_iterations = 2000) | ||
opts_br = ContinuationPar(dsmax = 0.05, | ||
max_steps = 500, | ||
newton_options = opt_newton, | ||
p_min = p_span[1], | ||
p_max = p_span[2], | ||
n_inversion = 4) | ||
bif_dia = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside = true) | ||
|
||
# Tests that the diagram has the correct values (x = b) | ||
all([b.x ≈ b.param for b in bif_dia.γ.branch]) | ||
|
||
# Tests that we get two Hopf bifurcations at the correct positions. | ||
hopf_points = sort(getfield.(filter(sp -> sp.type == :hopf, bif_dia.γ.specialpoint), | ||
:x); | ||
by = x -> x[1]) | ||
@test length(hopf_points) == 2 | ||
@test hopf_points[1] ≈ [0.41998733080424205, 1.5195495712453098] | ||
@test hopf_points[2] ≈ [0.7899715592573977, 1.0910379583813192] | ||
end | ||
|
||
# Simple fold bifurcation model, checks exact position of bifurcation variable and bifurcation points. | ||
# Checks that default parameter values are accounted for. | ||
# Checks that observables (that depend on other observables, as in this case) are accounted for. | ||
let | ||
# Creates model, and uses `structural_simplify` to generate observables. | ||
@parameters μ p=2 | ||
@variables t x(t) y(t) z(t) | ||
D = Differential(t) | ||
eqs = [0 ~ μ - x^3 + 2x^2, | ||
0 ~ p * μ - y, | ||
0 ~ y - z] | ||
@named nsys = NonlinearSystem(eqs, [x, y, z], [μ, p]) | ||
nsys = structural_simplify(nsys) | ||
|
||
# Creates BifurcationProblem. | ||
bif_par = μ | ||
p_start = [μ => 1.0] | ||
u0_guess = [x => 1.0, y => 0.1, z => 0.1] | ||
plot_var = x | ||
bprob = BifurcationProblem(nsys, u0_guess, p_start, bif_par; plot_var = plot_var) | ||
|
||
# Computes bifurcation diagram. | ||
p_span = (-4.3, 12.0) | ||
opt_newton = NewtonPar(tol = 1e-9, max_iterations = 20) | ||
opts_br = ContinuationPar(dsmin = 0.001, dsmax = 0.05, ds = 0.01, | ||
max_steps = 100, nev = 2, newton_options = opt_newton, | ||
p_min = p_span[1], p_max = p_span[2], | ||
detect_bifurcation = 3, n_inversion = 4, tol_bisection_eigenvalue = 1e-8, | ||
dsmin_bisection = 1e-9) | ||
opts_br = ContinuationPar(dsmax = 0.05, | ||
max_steps = 500, | ||
newton_options = opt_newton, | ||
p_min = p_span[1], | ||
p_max = p_span[2], | ||
n_inversion = 4) | ||
bif_dia = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside = true) | ||
|
||
bf = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside = true) | ||
# Tests that the diagram has the correct values (x = b) | ||
all([b.x ≈ 2 * b.param for b in bif_dia.γ.branch]) | ||
|
||
@test length(bf.child) == 2 | ||
# Tests that we get two fold bifurcations at the correct positions. | ||
fold_points = sort(getfield.(filter(sp -> sp.type == :bp, bif_dia.γ.specialpoint), | ||
:param)) | ||
@test length(fold_points) == 2 | ||
@test fold_points ≈ [-1.1851851706940317, -5.6734983580551894e-6] # test that they occur at the correct parameter values). | ||
end |