-
-
Notifications
You must be signed in to change notification settings - Fork 211
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test: add downstream analysis points tests
- Loading branch information
1 parent
9d88423
commit 71095f1
Showing
2 changed files
with
234 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
using ModelingToolkit, OrdinaryDiffEq, LinearAlgebra, ControlSystemsBase | ||
using ModelingToolkitStandardLibrary.Mechanical.Rotational | ||
using ModelingToolkitStandardLibrary.Blocks | ||
using ModelingToolkit: connect, AnalysisPoint, t_nounits as t, D_nounits as D | ||
import ControlSystemsBase as CS | ||
|
||
@testset "Complicated model" begin | ||
# Parameters | ||
m1 = 1 | ||
m2 = 1 | ||
k = 1000 # Spring stiffness | ||
c = 10 # Damping coefficient | ||
@named inertia1 = Inertia(; J = m1) | ||
@named inertia2 = Inertia(; J = m2) | ||
@named spring = Spring(; c = k) | ||
@named damper = Damper(; d = c) | ||
@named torque = Torque() | ||
|
||
function SystemModel(u = nothing; name = :model) | ||
eqs = [connect(torque.flange, inertia1.flange_a) | ||
connect(inertia1.flange_b, spring.flange_a, damper.flange_a) | ||
connect(inertia2.flange_a, spring.flange_b, damper.flange_b)] | ||
if u !== nothing | ||
push!(eqs, connect(torque.tau, u.output)) | ||
return ODESystem(eqs, t; | ||
systems = [ | ||
torque, | ||
inertia1, | ||
inertia2, | ||
spring, | ||
damper, | ||
u | ||
], | ||
name) | ||
end | ||
ODESystem(eqs, t; systems = [torque, inertia1, inertia2, spring, damper], name) | ||
end | ||
|
||
@named r = Step(start_time = 0) | ||
model = SystemModel() | ||
@named pid = PID(k = 100, Ti = 0.5, Td = 1) | ||
@named filt = SecondOrder(d = 0.9, w = 10) | ||
@named sensor = AngleSensor() | ||
@named er = Add(k2 = -1) | ||
|
||
connections = [connect(r.output, :r, filt.input) | ||
connect(filt.output, er.input1) | ||
connect(pid.ctr_output, :u, model.torque.tau) | ||
connect(model.inertia2.flange_b, sensor.flange) | ||
connect(sensor.phi, :y, er.input2) | ||
connect(er.output, :e, pid.err_input)] | ||
|
||
closed_loop = ODESystem(connections, t, systems = [model, pid, filt, sensor, r, er], | ||
name = :closed_loop, defaults = [ | ||
model.inertia1.phi => 0.0, | ||
model.inertia2.phi => 0.0, | ||
model.inertia1.w => 0.0, | ||
model.inertia2.w => 0.0, | ||
filt.x => 0.0, | ||
filt.xd => 0.0 | ||
]) | ||
|
||
sys = structural_simplify(closed_loop) | ||
prob = ODEProblem(sys, unknowns(sys) .=> 0.0, (0.0, 4.0)) | ||
sol = solve(prob, Rodas5P(), reltol = 1e-6, abstol = 1e-9) | ||
|
||
matrices, ssys = linearize(closed_loop, AnalysisPoint(:r), AnalysisPoint(:y)) | ||
lsys = ss(matrices...) |> sminreal | ||
@test lsys.nx == 8 | ||
|
||
stepres = ControlSystemsBase.step(c2d(lsys, 0.001), 4) | ||
@test Array(stepres.y[:])≈Array(sol(0:0.001:4, idxs = model.inertia2.phi)) rtol=1e-4 | ||
|
||
matrices, ssys = get_sensitivity(closed_loop, :y) | ||
So = ss(matrices...) | ||
|
||
matrices, ssys = get_sensitivity(closed_loop, :u) | ||
Si = ss(matrices...) | ||
|
||
@test tf(So) ≈ tf(Si) | ||
end | ||
|
||
@testset "Analysis points with subsystems" begin | ||
@named P = FirstOrder(k = 1, T = 1) | ||
@named C = Gain(; k = 1) | ||
@named add = Blocks.Add(k2 = -1) | ||
|
||
eqs = [connect(P.output, :plant_output, add.input2) | ||
connect(add.output, C.input) | ||
connect(C.output, :plant_input, P.input)] | ||
|
||
# eqs = [connect(P.output, add.input2) | ||
# connect(add.output, C.input) | ||
# connect(C.output, P.input)] | ||
|
||
sys_inner = ODESystem(eqs, t, systems = [P, C, add], name = :inner) | ||
|
||
@named r = Constant(k = 1) | ||
@named F = FirstOrder(k = 1, T = 3) | ||
|
||
eqs = [connect(r.output, F.input) | ||
connect(F.output, sys_inner.add.input1)] | ||
sys_outer = ODESystem(eqs, t, systems = [F, sys_inner, r], name = :outer) | ||
|
||
# test first that the structural_simplify works correctly | ||
ssys = structural_simplify(sys_outer) | ||
prob = ODEProblem(ssys, Pair[], (0, 10)) | ||
@test_nowarn solve(prob, Rodas5()) | ||
|
||
matrices, _ = get_sensitivity(sys_outer, sys_outer.inner.plant_input) | ||
lsys = sminreal(ss(matrices...)) | ||
@test lsys.A[] == -2 | ||
@test lsys.B[] * lsys.C[] == -1 # either one negative | ||
@test lsys.D[] == 1 | ||
|
||
matrices_So, _ = get_sensitivity(sys_outer, sys_outer.inner.plant_output) | ||
lsyso = sminreal(ss(matrices_So...)) | ||
@test lsys == lsyso || lsys == -1 * lsyso * (-1) # Output and input sensitivities are equal for SISO systems | ||
end | ||
|
||
@testset "multilevel system with loop openings" begin | ||
@named P_inner = FirstOrder(k = 1, T = 1) | ||
@named feedback = Feedback() | ||
@named ref = Step() | ||
@named sys_inner = ODESystem( | ||
[connect(P_inner.output, :y, feedback.input2) | ||
connect(feedback.output, :u, P_inner.input) | ||
connect(ref.output, :r, feedback.input1)], | ||
t, | ||
systems = [P_inner, feedback, ref]) | ||
|
||
P_not_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y)) | ||
@test P_not_broken.A[] == -2 | ||
P_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y), | ||
loop_openings = [AnalysisPoint(:u)]) | ||
@test P_broken.A[] == -1 | ||
P_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y), | ||
loop_openings = [AnalysisPoint(:y)]) | ||
@test P_broken.A[] == -1 | ||
|
||
Sinner = sminreal(ss(get_sensitivity(sys_inner, :u)[1]...)) | ||
|
||
@named sys_inner = ODESystem( | ||
[connect(P_inner.output, :y, feedback.input2) | ||
connect(feedback.output, :u, P_inner.input)], | ||
t, | ||
systems = [P_inner, feedback]) | ||
|
||
@named P_outer = FirstOrder(k = rand(), T = rand()) | ||
|
||
@named sys_outer = ODESystem( | ||
[connect(sys_inner.P_inner.output, :y2, P_outer.input) | ||
connect(P_outer.output, :u2, sys_inner.feedback.input1)], | ||
t, | ||
systems = [P_outer, sys_inner]) | ||
|
||
Souter = sminreal(ss(get_sensitivity(sys_outer, :sys_inner_u)[1]...)) | ||
|
||
Sinner2 = sminreal(ss(get_sensitivity( | ||
sys_outer, :sys_inner_u, loop_openings = [:y2])[1]...)) | ||
|
||
@test Sinner.nx == 1 | ||
@test Sinner == Sinner2 | ||
@test Souter.nx == 2 | ||
end | ||
|
||
@testset "sensitivities in multivariate signals" begin | ||
A = [-0.994 -0.0794; -0.006242 -0.0134] | ||
B = [-0.181 -0.389; 1.1 1.12] | ||
C = [1.74 0.72; -0.33 0.33] | ||
D = [0.0 0.0; 0.0 0.0] | ||
@named P = Blocks.StateSpace(A, B, C, D) | ||
Pss = CS.ss(A, B, C, D) | ||
|
||
A = [-0.097;;] | ||
B = [-0.138 -1.02] | ||
C = [-0.076; 0.09;;] | ||
D = [0.0 0.0; 0.0 0.0] | ||
@named K = Blocks.StateSpace(A, B, C, D) | ||
Kss = CS.ss(A, B, C, D) | ||
|
||
eqs = [connect(P.output, :plant_output, K.input) | ||
connect(K.output, :plant_input, P.input)] | ||
sys = ODESystem(eqs, t, systems = [P, K], name = :hej) | ||
|
||
matrices, _ = Blocks.get_sensitivity(sys, :plant_input) | ||
S = CS.feedback(I(2), Kss * Pss, pos_feedback = true) | ||
|
||
@test CS.tf(CS.ss(matrices...)) ≈ CS.tf(S) | ||
|
||
matrices, _ = Blocks.get_comp_sensitivity(sys, :plant_input) | ||
T = -CS.feedback(Kss * Pss, I(2), pos_feedback = true) | ||
|
||
# bodeplot([ss(matrices...), T]) | ||
@test CS.tf(CS.ss(matrices...)) ≈ CS.tf(T) | ||
|
||
matrices, _ = Blocks.get_looptransfer( | ||
sys, :plant_input) | ||
L = Kss * Pss | ||
@test CS.tf(CS.ss(matrices...)) ≈ CS.tf(L) | ||
|
||
matrices, _ = linearize(sys, :plant_input, :plant_output) | ||
G = CS.feedback(Pss, Kss, pos_feedback = true) | ||
@test CS.tf(CS.ss(matrices...)) ≈ CS.tf(G) | ||
end | ||
|
||
@testset "multiple analysis points" begin | ||
@named P = FirstOrder(k = 1, T = 1) | ||
@named C = Gain(; k = 1) | ||
@named add = Blocks.Add(k2 = -1) | ||
|
||
eqs = [connect(P.output, :plant_output, add.input2) | ||
connect(add.output, C.input) | ||
connect(C.output, :plant_input, P.input)] | ||
|
||
sys_inner = ODESystem(eqs, t, systems = [P, C, add], name = :inner) | ||
|
||
@named r = Constant(k = 1) | ||
@named F = FirstOrder(k = 1, T = 3) | ||
|
||
eqs = [connect(r.output, F.input) | ||
connect(F.output, sys_inner.add.input1)] | ||
sys_outer = ODESystem(eqs, t, systems = [F, sys_inner, r], name = :outer) | ||
|
||
matrices, _ = get_sensitivity(sys_outer, [:, :inner_plant_output]) | ||
|
||
Ps = tf(1, [1, 1]) |> ss | ||
Cs = tf(1) |> ss | ||
|
||
G = CS.ss(matrices...) |> sminreal | ||
Si = CS.feedback(1, Cs * Ps) | ||
@test tf(G[1, 1]) ≈ tf(Si) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters