Skip to content

Commit

Permalink
test: add downstream analysis points tests
Browse files Browse the repository at this point in the history
  • Loading branch information
AayushSabharwal committed Dec 29, 2024
1 parent 9d88423 commit 71095f1
Show file tree
Hide file tree
Showing 2 changed files with 234 additions and 0 deletions.
233 changes: 233 additions & 0 deletions test/downstream/analysis_points.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
using ModelingToolkit, OrdinaryDiffEq, LinearAlgebra, ControlSystemsBase
using ModelingToolkitStandardLibrary.Mechanical.Rotational
using ModelingToolkitStandardLibrary.Blocks
using ModelingToolkit: connect, AnalysisPoint, t_nounits as t, D_nounits as D
import ControlSystemsBase as CS

@testset "Complicated model" begin
# Parameters
m1 = 1
m2 = 1
k = 1000 # Spring stiffness
c = 10 # Damping coefficient
@named inertia1 = Inertia(; J = m1)
@named inertia2 = Inertia(; J = m2)
@named spring = Spring(; c = k)
@named damper = Damper(; d = c)
@named torque = Torque()

function SystemModel(u = nothing; name = :model)
eqs = [connect(torque.flange, inertia1.flange_a)
connect(inertia1.flange_b, spring.flange_a, damper.flange_a)
connect(inertia2.flange_a, spring.flange_b, damper.flange_b)]
if u !== nothing
push!(eqs, connect(torque.tau, u.output))
return ODESystem(eqs, t;
systems = [
torque,
inertia1,
inertia2,
spring,
damper,
u
],
name)
end
ODESystem(eqs, t; systems = [torque, inertia1, inertia2, spring, damper], name)
end

@named r = Step(start_time = 0)
model = SystemModel()
@named pid = PID(k = 100, Ti = 0.5, Td = 1)
@named filt = SecondOrder(d = 0.9, w = 10)
@named sensor = AngleSensor()
@named er = Add(k2 = -1)

connections = [connect(r.output, :r, filt.input)
connect(filt.output, er.input1)
connect(pid.ctr_output, :u, model.torque.tau)
connect(model.inertia2.flange_b, sensor.flange)
connect(sensor.phi, :y, er.input2)
connect(er.output, :e, pid.err_input)]

closed_loop = ODESystem(connections, t, systems = [model, pid, filt, sensor, r, er],
name = :closed_loop, defaults = [
model.inertia1.phi => 0.0,
model.inertia2.phi => 0.0,
model.inertia1.w => 0.0,
model.inertia2.w => 0.0,
filt.x => 0.0,
filt.xd => 0.0
])

sys = structural_simplify(closed_loop)
prob = ODEProblem(sys, unknowns(sys) .=> 0.0, (0.0, 4.0))
sol = solve(prob, Rodas5P(), reltol = 1e-6, abstol = 1e-9)

matrices, ssys = linearize(closed_loop, AnalysisPoint(:r), AnalysisPoint(:y))
lsys = ss(matrices...) |> sminreal
@test lsys.nx == 8

stepres = ControlSystemsBase.step(c2d(lsys, 0.001), 4)
@test Array(stepres.y[:])Array(sol(0:0.001:4, idxs = model.inertia2.phi)) rtol=1e-4

matrices, ssys = get_sensitivity(closed_loop, :y)
So = ss(matrices...)

matrices, ssys = get_sensitivity(closed_loop, :u)
Si = ss(matrices...)

@test tf(So) tf(Si)
end

@testset "Analysis points with subsystems" begin
@named P = FirstOrder(k = 1, T = 1)
@named C = Gain(; k = 1)
@named add = Blocks.Add(k2 = -1)

eqs = [connect(P.output, :plant_output, add.input2)
connect(add.output, C.input)
connect(C.output, :plant_input, P.input)]

# eqs = [connect(P.output, add.input2)
# connect(add.output, C.input)
# connect(C.output, P.input)]

sys_inner = ODESystem(eqs, t, systems = [P, C, add], name = :inner)

@named r = Constant(k = 1)
@named F = FirstOrder(k = 1, T = 3)

eqs = [connect(r.output, F.input)
connect(F.output, sys_inner.add.input1)]
sys_outer = ODESystem(eqs, t, systems = [F, sys_inner, r], name = :outer)

# test first that the structural_simplify works correctly
ssys = structural_simplify(sys_outer)
prob = ODEProblem(ssys, Pair[], (0, 10))
@test_nowarn solve(prob, Rodas5())

matrices, _ = get_sensitivity(sys_outer, sys_outer.inner.plant_input)
lsys = sminreal(ss(matrices...))
@test lsys.A[] == -2
@test lsys.B[] * lsys.C[] == -1 # either one negative
@test lsys.D[] == 1

matrices_So, _ = get_sensitivity(sys_outer, sys_outer.inner.plant_output)
lsyso = sminreal(ss(matrices_So...))
@test lsys == lsyso || lsys == -1 * lsyso * (-1) # Output and input sensitivities are equal for SISO systems
end

@testset "multilevel system with loop openings" begin
@named P_inner = FirstOrder(k = 1, T = 1)
@named feedback = Feedback()
@named ref = Step()
@named sys_inner = ODESystem(
[connect(P_inner.output, :y, feedback.input2)
connect(feedback.output, :u, P_inner.input)
connect(ref.output, :r, feedback.input1)],
t,
systems = [P_inner, feedback, ref])

P_not_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y))
@test P_not_broken.A[] == -2
P_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y),
loop_openings = [AnalysisPoint(:u)])
@test P_broken.A[] == -1
P_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y),
loop_openings = [AnalysisPoint(:y)])
@test P_broken.A[] == -1

Sinner = sminreal(ss(get_sensitivity(sys_inner, :u)[1]...))

@named sys_inner = ODESystem(
[connect(P_inner.output, :y, feedback.input2)
connect(feedback.output, :u, P_inner.input)],
t,
systems = [P_inner, feedback])

@named P_outer = FirstOrder(k = rand(), T = rand())

@named sys_outer = ODESystem(
[connect(sys_inner.P_inner.output, :y2, P_outer.input)
connect(P_outer.output, :u2, sys_inner.feedback.input1)],
t,
systems = [P_outer, sys_inner])

Souter = sminreal(ss(get_sensitivity(sys_outer, :sys_inner_u)[1]...))

Sinner2 = sminreal(ss(get_sensitivity(
sys_outer, :sys_inner_u, loop_openings = [:y2])[1]...))

@test Sinner.nx == 1
@test Sinner == Sinner2
@test Souter.nx == 2
end

@testset "sensitivities in multivariate signals" begin
A = [-0.994 -0.0794; -0.006242 -0.0134]
B = [-0.181 -0.389; 1.1 1.12]
C = [1.74 0.72; -0.33 0.33]
D = [0.0 0.0; 0.0 0.0]
@named P = Blocks.StateSpace(A, B, C, D)
Pss = CS.ss(A, B, C, D)

A = [-0.097;;]
B = [-0.138 -1.02]
C = [-0.076; 0.09;;]
D = [0.0 0.0; 0.0 0.0]
@named K = Blocks.StateSpace(A, B, C, D)
Kss = CS.ss(A, B, C, D)

eqs = [connect(P.output, :plant_output, K.input)
connect(K.output, :plant_input, P.input)]
sys = ODESystem(eqs, t, systems = [P, K], name = :hej)

matrices, _ = Blocks.get_sensitivity(sys, :plant_input)
S = CS.feedback(I(2), Kss * Pss, pos_feedback = true)

@test CS.tf(CS.ss(matrices...)) CS.tf(S)

matrices, _ = Blocks.get_comp_sensitivity(sys, :plant_input)
T = -CS.feedback(Kss * Pss, I(2), pos_feedback = true)

# bodeplot([ss(matrices...), T])
@test CS.tf(CS.ss(matrices...)) CS.tf(T)

matrices, _ = Blocks.get_looptransfer(
sys, :plant_input)
L = Kss * Pss
@test CS.tf(CS.ss(matrices...)) CS.tf(L)

matrices, _ = linearize(sys, :plant_input, :plant_output)
G = CS.feedback(Pss, Kss, pos_feedback = true)
@test CS.tf(CS.ss(matrices...)) CS.tf(G)
end

@testset "multiple analysis points" begin
@named P = FirstOrder(k = 1, T = 1)
@named C = Gain(; k = 1)
@named add = Blocks.Add(k2 = -1)

eqs = [connect(P.output, :plant_output, add.input2)
connect(add.output, C.input)
connect(C.output, :plant_input, P.input)]

sys_inner = ODESystem(eqs, t, systems = [P, C, add], name = :inner)

@named r = Constant(k = 1)
@named F = FirstOrder(k = 1, T = 3)

eqs = [connect(r.output, F.input)
connect(F.output, sys_inner.add.input1)]
sys_outer = ODESystem(eqs, t, systems = [F, sys_inner, r], name = :outer)

matrices, _ = get_sensitivity(sys_outer, [:, :inner_plant_output])

Ps = tf(1, [1, 1]) |> ss
Cs = tf(1) |> ss

G = CS.ss(matrices...) |> sminreal
Si = CS.feedback(1, Cs * Ps)
@test tf(G[1, 1]) tf(Si)
end
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,7 @@ end
@safetestset "Linearization Tests" include("downstream/linearize.jl")
@safetestset "Linearization Dummy Derivative Tests" include("downstream/linearization_dd.jl")
@safetestset "Inverse Models Test" include("downstream/inversemodel.jl")
@safetestset "Analysis Points Test" include("downstream/analysis_points.jl")
end

if GROUP == "All" || GROUP == "Extensions"
Expand Down

0 comments on commit 71095f1

Please sign in to comment.