Skip to content

Commit

Permalink
Unicode removal
Browse files Browse the repository at this point in the history
  • Loading branch information
axla-io committed Oct 9, 2023
1 parent 8ebd813 commit aa8a5ed
Showing 1 changed file with 41 additions and 39 deletions.
80 changes: 41 additions & 39 deletions src/dfsane.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
"""
DFSane(; σₘᵢₙ::Real = 1e-10, σₘₐₓ::Real = 1e10, σ₁::Real = 1.0,
M::Int = 10, γ::Real = 1e-4, τₘᵢₙ::Real = 0.1, τₘₐₓ::Real = 0.5,
nₑₓₚ::Int = 2, ηₛ::Function = (f₍ₙₒᵣₘ₎₁, n, xₙ, fₙ) -> f₍ₙₒᵣₘ₎₁ / n^2,
DFSane(; σ_min::Real = 1e-10, σ_max::Real = 1e10, σ_1::Real = 1.0,
M::Int = 10, γ::Real = 1e-4, τ_min::Real = 0.1, τ_max::Real = 0.5,
n_exp::Int = 2, η_strategy::Function = (fn_1, n, x_n, f_n) -> fn_1 / n^2,
max_inner_iterations::Int = 1000)
A low-overhead and allocation-free implementation of the df-sane method for solving large-scale nonlinear
Expand All @@ -14,11 +14,11 @@ See also the implementation in [SimpleNonlinearSolve.jl](https://github.com/SciM
### Keyword Arguments
- `σₘᵢₙ`: the minimum value of the spectral coefficient `σₙ` which is related to the step
- `σ_min`: the minimum value of the spectral coefficient `σₙ` which is related to the step
size in the algorithm. Defaults to `1e-10`.
- `σₘₐₓ`: the maximum value of the spectral coefficient `σₙ` which is related to the step
- `σ_max`: the maximum value of the spectral coefficient `σₙ` which is related to the step
size in the algorithm. Defaults to `1e10`.
- `σ₁`: the initial value of the spectral coefficient `σₙ` which is related to the step
- `σ_1`: the initial value of the spectral coefficient `σₙ` which is related to the step
size in the algorithm.. Defaults to `1.0`.
- `M`: The monotonicity of the algorithm is determined by a this positive integer.
A value of 1 for `M` would result in strict monotonicity in the decrease of the L2-norm
Expand All @@ -29,53 +29,53 @@ See also the implementation in [SimpleNonlinearSolve.jl](https://github.com/SciM
for a higher value of `M`. The default setting is 10.
- `γ`: a parameter that influences if a proposed step will be accepted. Higher value of `γ`
will make the algorithm more restrictive in accepting steps. Defaults to `1e-4`.
- `τₘᵢₙ`: if a step is rejected the new step size will get multiplied by factor, and this
- `τ_min`: if a step is rejected the new step size will get multiplied by factor, and this
parameter is the minimum value of that factor. Defaults to `0.1`.
- `τₘₐₓ`: if a step is rejected the new step size will get multiplied by factor, and this
- `τ_max`: if a step is rejected the new step size will get multiplied by factor, and this
parameter is the maximum value of that factor. Defaults to `0.5`.
- `nₑₓₚ`: the exponent of the loss, i.e. ``fₙ=||F(xₙ)||^{nₑₓₚ}``. The paper uses
`nₑₓₚ ∈ {1,2}`. Defaults to `2`.
- `ηₛ`: function to determine the parameter `η`, which enables growth
of ``||fₙ||^2``. Called as ``η = ηₛ(f₍ₙₒᵣₘ₎₁, n, xₙ, fₙ)`` with `f₍ₙₒᵣₘ₎₁` initialized as
``f₍ₙₒᵣₘ₎₁=||f(x₁)||^{nₑₓₚ}``, `n` is the iteration number, `xₙ` is the current `x`-value and
`fₙ` the current residual. Should satisfy ``η > 0`` and ``∑ₖ ηₖ < ∞``. Defaults to
``f₍ₙₒᵣₘ₎₁ / n^2``.
- `n_exp`: the exponent of the loss, i.e. ``f_n=||F(x_n)||^{n_exp}``. The paper uses
`n_exp ∈ {1,2}`. Defaults to `2`.
- `η_strategy`: function to determine the parameter `η`, which enables growth
of ``||f_n||^2``. Called as ``η = η_strategy(fn_1, n, x_n, f_n)`` with `fn_1` initialized as
``fn_1=||f(x_1)||^{n_exp}``, `n` is the iteration number, `x_n` is the current `x`-value and
`f_n` the current residual. Should satisfy ``η > 0`` and ``∑ₖ ηₖ < ∞``. Defaults to
``fn_1 / n^2``.
- `max_inner_iterations`: the maximum number of iterations allowed for the inner loop of the
algorithm. Defaults to `1000`.
"""

struct DFSane{T, F} <: AbstractNonlinearSolveAlgorithm
σₘᵢₙ::T
σₘₐₓ::T
σ₁::T
σ_min::T
σ_max::T
σ_1::T
M::Int
γ::T
τₘᵢₙ::T
τₘₐₓ::T
nₑₓₚ::Int
ηₛ::F
τ_min::T
τ_max::T
n_exp::Int
η_strategy::F
max_inner_iterations::Int
end

function DFSane(; σₘᵢₙ = 1e-10,
σₘₐₓ = 1e+10,
σ₁ = 1.0,
function DFSane(; σ_min = 1e-10,
σ_max = 1e+10,
σ_1 = 1.0,
M = 10,
γ = 1e-4,
τₘᵢₙ = 0.1,
τₘₐₓ = 0.5,
nₑₓₚ = 2,
ηₛ = (f₍ₙₒᵣₘ₎₁, n, xₙ, fₙ) -> f₍ₙₒᵣₘ₎₁ / n^2,
τ_min = 0.1,
τ_max = 0.5,
n_exp = 2,
η_strategy = (fn_1, n, x_n, f_n) -> fn_1 / n^2,
max_inner_iterations = 1000)
return DFSane{typeof(σₘᵢₙ), typeof(ηₛ)}(σₘᵢₙ,
σₘₐₓ,
σ₁,
return DFSane{typeof(σ_min), typeof(η_strategy)}(σ_min,
σ_max,
σ_1,
M,
γ,
τₘᵢₙ,
τₘₐₓ,
nₑₓₚ,
ηₛ,
τ_min,
τ_max,
n_exp,
η_strategy,
max_inner_iterations)
end
mutable struct DFSaneCache{iip, fType, algType, uType, resType, T, pType,
Expand All @@ -89,7 +89,7 @@ mutable struct DFSaneCache{iip, fType, algType, uType, resType, T, pType,
fuₙ::resType
fuₙ₋₁::resType
𝒹::uType
::uType
::Vector{T}
f₍ₙₒᵣₘ₎ₙ₋₁::T
f₍ₙₒᵣₘ₎₀::T
M::Int
Expand All @@ -110,7 +110,7 @@ mutable struct DFSaneCache{iip, fType, algType, uType, resType, T, pType,
prob::probType
stats::NLStats
function DFSaneCache{iip}(f::fType, alg::algType, uₙ::uType, uₙ₋₁::uType,
fuₙ::resType, fuₙ₋₁::resType, 𝒹::uType, ℋ::uType,
fuₙ::resType, fuₙ₋₁::resType, 𝒹::uType, ℋ::Vector{T},
f₍ₙₒᵣₘ₎ₙ₋₁::T, f₍ₙₒᵣₘ₎₀::T, M::Int, σₙ::T, σₘᵢₙ::T, σₘₐₓ::T,
α₁::T, γ::T, τₘᵢₙ::T, τₘₐₓ::T, nₑₓₚ::Int, p::pType,
force_stop::Bool, maxiters::Int, internalnorm::INType,
Expand Down Expand Up @@ -167,7 +167,6 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::DFSane,
f₍ₙₒᵣₘ₎₀ = f₍ₙₒᵣₘ₎ₙ₋₁

= fill(f₍ₙₒᵣₘ₎ₙ₋₁, M)

return DFSaneCache{iip}(f, alg, uₙ, uₙ₋₁, fuₙ, fuₙ₋₁, 𝒹, ℋ, f₍ₙₒᵣₘ₎ₙ₋₁, f₍ₙₒᵣₘ₎₀,
M, σₙ, σₘᵢₙ, σₘₐₓ, α₁, γ, τₘᵢₙ,
τₘₐₓ, nₑₓₚ, p, false, maxiters,
Expand Down Expand Up @@ -263,6 +262,9 @@ function perform_step!(cache::DFSaneCache{false})
σₙ = sign(σₙ) * clamp(abs(σₙ), σₘᵢₙ, σₘₐₓ)

# Line search direction
if isdefined(Main, :Infiltrator)
Main.infiltrate(@__MODULE__, Base.@locals, @__FILE__, @__LINE__)
end
@. cache.𝒹 = -σₙ * cache.fuₙ₋₁

η = alg.ηₛ(f₍ₙₒᵣₘ₎₀, n, cache.uₙ₋₁, cache.fuₙ₋₁)
Expand Down

0 comments on commit aa8a5ed

Please sign in to comment.