Skip to content

Commit

Permalink
feat: SimpleLimitedMemoryBroyden impl
Browse files Browse the repository at this point in the history
  • Loading branch information
avik-pal committed Oct 23, 2024
1 parent bc7a331 commit fbb5911
Show file tree
Hide file tree
Showing 2 changed files with 329 additions and 2 deletions.
4 changes: 2 additions & 2 deletions lib/SimpleNonlinearSolve/src/SimpleNonlinearSolve.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ using PrecompileTools: @compile_workload, @setup_workload
using Reexport: @reexport
@reexport using SciMLBase # I don't like this but needed to avoid a breaking change
using SciMLBase: AbstractNonlinearAlgorithm, NonlinearProblem, ReturnCode
using StaticArraysCore: StaticArray, SVector
using StaticArraysCore: StaticArray, SArray, SVector, MArray

# AD Dependencies
using ADTypes: AbstractADType, AutoFiniteDiff, AutoForwardDiff, AutoPolyesterForwardDiff
Expand Down Expand Up @@ -107,7 +107,7 @@ export AutoFiniteDiff, AutoForwardDiff, AutoPolyesterForwardDiff

export Alefeld, Bisection, Brent, Falsi, ITP, Ridder

export SimpleBroyden, SimpleKlement
export SimpleBroyden, SimpleKlement, SimpleLimitedMemoryBroyden
export SimpleDFSane
export SimpleGaussNewton, SimpleNewtonRaphson, SimpleTrustRegion
export SimpleHalley
Expand Down
327 changes: 327 additions & 0 deletions lib/SimpleNonlinearSolve/src/lbroyden.jl
Original file line number Diff line number Diff line change
@@ -1 +1,328 @@
"""
SimpleLimitedMemoryBroyden(; threshold::Union{Val, Int} = Val(27),
linesearch = Val(false), alpha = nothing)
A limited memory implementation of Broyden. This method applies the L-BFGS scheme to
Broyden's method.
If the threshold is larger than the problem size, then this method will use `SimpleBroyden`.
### Keyword Arguments:
- `linesearch`: If `linesearch` is `Val(true)`, then we use the `LiFukushimaLineSearch`
line search else no line search is used. For advanced customization of the line search,
use `Broyden` from `NonlinearSolve.jl`.
- `alpha`: Scale the initial jacobian initialization with `alpha`. If it is `nothing`, we
will compute the scaling using `2 * norm(fu) / max(norm(u), true)`.
!!! warning
Currently `alpha` is only used for StaticArray problems. This will be fixed in the
future.
"""
@concrete struct SimpleLimitedMemoryBroyden <: AbstractSimpleNonlinearSolveAlgorithm
linesearch <: Union{Val{false}, Val{true}}
threshold <: Val
alpha
end

function SimpleLimitedMemoryBroyden(; threshold::Union{Val, Int} = Val(27),
linesearch::Union{Bool, Val{true}, Val{false}} = Val(false), alpha = nothing)
linesearch = linesearch isa Bool ? Val(linesearch) : linesearch
threshold = threshold isa Int ? Val(threshold) : threshold
return SimpleLimitedMemoryBroyden(linesearch, threshold, alpha)
end

function SciMLBase.__solve(
prob::ImmutableNonlinearProblem, alg::SimpleLimitedMemoryBroyden,
args...; termination_condition = nothing, kwargs...)
if prob.u0 isa SArray
if termination_condition === nothing ||
termination_condition isa AbsNormTerminationMode
return internal_static_solve(
prob, alg, args...; termination_condition, kwargs...)
end
@warn "Specifying `termination_condition = $(termination_condition)` for \
`SimpleLimitedMemoryBroyden` with `SArray` is not non-allocating. Use \
either `termination_condition = AbsNormTerminationMode()` or \
`termination_condition = nothing`." maxlog=1
end
return internal_generic_solve(prob, alg, args...; termination_condition, kwargs...)
end

@views function internal_generic_solve(
prob::ImmutableNonlinearProblem, alg::SimpleLimitedMemoryBroyden,
args...; abstol = nothing, reltol = nothing, maxiters = 1000,
alias_u0 = false, termination_condition = nothing, kwargs...)
x = Utils.maybe_unaliased(prob.u0, alias_u0)
η = min(SciMLBase._unwrap_val(alg.threshold), maxiters)

# For scalar problems / if the threshold is larger than problem size just use Broyden
if x isa Number || length(x) η
return SciMLBase.__solve(prob, SimpleBroyden(; alg.linesearch), args...; abstol,
reltol, maxiters, termination_condition, kwargs...)
end

fx = Utils.get_fx(prob, x)

U, Vᵀ = init_low_rank_jacobian(x, fx, x isa StaticArray ? alg.threshold : Val(η))

abstol, reltol, tc_cache = NonlinearSolveBase.init_termination_cache(
prob, abstol, reltol, fx, x, termination_condition, Val(:simple))

@bb xo = copy(x)
@bb δx = copy(fx)
@bb δx .*= -1
@bb fo = copy(fx)
@bb δf = copy(fx)

@bb vᵀ_cache = copy(x)
Tcache = lbroyden_threshold_cache(x, x isa StaticArray ? alg.threshold : Val(η))
@bb mat_cache = copy(x)

if alg.linesearch === Val(true)
ls_alg = LiFukushimaLineSearch(; nan_maxiters = nothing)
ls_cache = init(prob, ls_alg, fx, x)
else
ls_cache = nothing
end

for i in 1:maxiters
if ls_cache === nothing
α = true
else
ls_sol = solve!(ls_cache, xo, δx)
α = ls_sol.step_size # Ignores the return code for now
end

@bb @. x = xo + α * δx
fx = Utils.eval_f(prob, fx, x)
@bb @. δf = fx - fo

# Termination Checks
solved, retcode, fx_sol, x_sol = Utils.check_termination(tc_cache, fx, x, xo, prob)
solved && return SciMLBase.build_solution(prob, alg, x_sol, fx_sol; retcode)

Uₚ = selectdim(U, 2, 1:min(η, i - 1))
Vᵀₚ = selectdim(Vᵀ, 1, 1:min(η, i - 1))

vᵀ = rmatvec!!(vᵀ_cache, Tcache, Uₚ, Vᵀₚ, δx)
mvec = matvec!!(mat_cache, Tcache, Uₚ, Vᵀₚ, δf)
d = dot(vᵀ, δf)
@bb @. δx = (δx - mvec) / d

selectdim(U, 2, mod1(i, η)) .= Utils.safe_vec(δx)
selectdim(Vᵀ, 1, mod1(i, η)) .= Utils.safe_vec(vᵀ)

Uₚ = selectdim(U, 2, 1:min(η, i))
Vᵀₚ = selectdim(Vᵀ, 1, 1:min(η, i))
δx = matvec!!(δx, Tcache, Uₚ, Vᵀₚ, fx)
@bb @. δx *= -1

@bb copyto!(xo, x)
@bb copyto!(fo, fx)
end

return SciMLBase.build_solution(prob, alg, x, fx; retcode = ReturnCode.MaxIters)
end

# Non-allocating StaticArrays version of SimpleLimitedMemoryBroyden is actually quite
# finicky, so we'll implement it separately from the generic version
# Ignore termination_condition. Don't pass things into internal functions
function internal_static_solve(
prob::ImmutableNonlinearProblem{<:SArray}, alg::SimpleLimitedMemoryBroyden,
args...; abstol = nothing, maxiters = 1000, kwargs...)
x = prob.u0
fx = Utils.get_fx(prob, x)

U, Vᵀ = init_low_rank_jacobian(vec(x), vec(fx), alg.threshold)

abstol = NonlinearSolveBase.get_tolerance(x, abstol, eltype(x))

xo, δx, fo, δf = x, -fx, fx, fx

if alg.linesearch === Val(true)
ls_alg = LiFukushimaLineSearch(; nan_maxiters = nothing)
ls_cache = init(prob, ls_alg, fx, x)
else
ls_cache = nothing
end

T = promote_type(eltype(x), eltype(fx))
if alg.alpha === nothing
fx_norm = L2_NORM(fx)
x_norm = L2_NORM(x)
init_α = ifelse(fx_norm 1e-5, max(x_norm, T(true)) / (2 * fx_norm), T(true))
else
init_α = inv(alg.alpha)
end

converged, res = internal_unrolled_lbroyden_initial_iterations(
prob, xo, fo, δx, abstol, U, Vᵀ, alg.threshold, ls_cache, init_α)

converged && return SciMLBase.build_solution(
prob, alg, res.x, res.fx; retcode = ReturnCode.Success)

xo, fo, δx = res.x, res.fx, res.δx

for i in 1:(maxiters - SciMLBase._unwrap_val(alg.threshold))
if ls_cache === nothing
α = true
else
ls_sol = solve!(ls_cache, xo, δx)
α = ls_sol.step_size # Ignores the return code for now
end

x = xo + α * δx
fx = Utils.eval_f(prob, fx, x)
δf = fx - fo

maximum(abs, fx) abstol &&
return SciMLBase.build_solution(prob, alg, x, fx; retcode = ReturnCode.Success)

vᵀ = Utils.restructure(x, rmatvec!!(U, Vᵀ, vec(δx), init_α))
mvec = Utils.restructure(x, matvec!!(U, Vᵀ, vec(δf), init_α))

d = dot(vᵀ, δf)
δx = @. (δx - mvec) / d

U = Base.setindex(U, vec(δx), mod1(i, SciMLBase._unwrap_val(alg.threshold)))
Vᵀ = Base.setindex(Vᵀ, vec(vᵀ), mod1(i, SciMLBase._unwrap_val(alg.threshold)))

δx = -Utils.restructure(fx, matvec!!(U, Vᵀ, vec(fx), init_α))

xo, fo = x, fx
end

return SciMLBase.build_solution(prob, alg, xo, fo; retcode = ReturnCode.MaxIters)
end

@generated function internal_unrolled_lbroyden_initial_iterations(
prob, xo, fo, δx, abstol, U, Vᵀ, ::Val{threshold},
ls_cache, init_α) where {threshold}
calls = []
for i in 1:threshold
static_idx, static_idx_p1 = Val(i - 1), Val(i)
push!(calls, quote
α = ls_cache === nothing ? true : ls_cache(xo, δx)
x = xo .+ α .* δx
fx = prob.f(x, prob.p)
δf = fx - fo

maximum(abs, fx) abstol && return true, (; x, fx, δx)

Uₚ = first_n_getindex(U, $(static_idx))
Vᵀₚ = first_n_getindex(Vᵀ, $(static_idx))

vᵀ = Utils.restructure(x, rmatvec!!(Uₚ, Vᵀₚ, vec(δx), init_α))
mvec = Utils.restructure(x, matvec!!(Uₚ, Vᵀₚ, vec(δf), init_α))

d = dot(vᵀ, δf)
δx = @. (δx - mvec) / d

U = Base.setindex(U, vec(δx), $(i))
Vᵀ = Base.setindex(Vᵀ, vec(vᵀ), $(i))

Uₚ = first_n_getindex(U, $(static_idx_p1))
Vᵀₚ = first_n_getindex(Vᵀ, $(static_idx_p1))
δx = -Utils.restructure(fx, matvec!!(Uₚ, Vᵀₚ, vec(fx), init_α))

x0, fo = x, fx
end)
end
push!(calls, quote
# Termination Check
maximum(abs, fx) abstol && return true, (; x, fx, δx)

return false, (; x, fx, δx)
end)
return Expr(:block, calls...)
end

function rmatvec!!(y, xᵀU, U, Vᵀ, x)
# xᵀ × (-I + UVᵀ)
η = size(U, 2)
if η == 0
@bb @. y = -x
return y
end
x_ = vec(x)
xᵀU_ = view(xᵀU, 1:η)
@bb xᵀU_ = transpose(U) × x_
@bb y = transpose(Vᵀ) × vec(xᵀU_)
@bb @. y -= x
return y
end

rmatvec!!(::Nothing, Vᵀ, x, init_α) = -x .* init_α
rmatvec!!(U, Vᵀ, x, init_α) = fast_mapTdot(fast_mapdot(x, U), Vᵀ) .- x .* init_α

function matvec!!(y, Vᵀx, U, Vᵀ, x)
# (-I + UVᵀ) × x
η = size(U, 2)
if η == 0
@bb @. y = -x
return y
end
x_ = vec(x)
Vᵀx_ = view(Vᵀx, 1:η)
@bb Vᵀx_ = Vᵀ × x_
@bb y = U × vec(Vᵀx_)
@bb @. y -= x
return y
end

@inline matvec!!(::Nothing, Vᵀ, x, init_α) = -x .* init_α
@inline matvec!!(U, Vᵀ, x, init_α) = fast_mapTdot(fast_mapdot(x, Vᵀ), U) .- x .* init_α

function fast_mapdot(x::SVector{S1}, Y::SVector{S2, <:SVector{S1}}) where {S1, S2}
return map(Base.Fix1(dot, x), Y)
end
@generated function fast_mapTdot(
x::SVector{S1}, Y::SVector{S1, <:SVector{S2}}) where {S1, S2}
calls = []
syms = [gensym("m$(i)") for i in 1:S1]
for i in 1:S1
push!(calls, :($(syms[i]) = x[$(i)] .* Y[$i]))
end
push!(calls, :(return .+($(syms...))))
return Expr(:block, calls...)
end

@generated function first_n_getindex(x::SVector{L, T}, ::Val{N}) where {L, T, N}
@assert N L
getcalls = ntuple(i -> :(x[$i]), N)
N == 0 && return :(return nothing)
return :(return SVector{$N, $T}(($(getcalls...))))
end

lbroyden_threshold_cache(x, ::Val{threshold}) where {threshold} = similar(x, threshold)
function lbroyden_threshold_cache(x::StaticArray, ::Val{threshold}) where {threshold}
return zeros(MArray{Tuple{threshold}, eltype(x)})
end
lbroyden_threshold_cache(::SArray, ::Val{threshold}) where {threshold} = nothing

function init_low_rank_jacobian(u::StaticArray{S1, T1}, fu::StaticArray{S2, T2},
::Val{threshold}) where {S1, S2, T1, T2, threshold}
T = promote_type(T1, T2)
fuSize, uSize = Size(fu), Size(u)
Vᵀ = MArray{Tuple{threshold, prod(uSize)}, T}(undef)
U = MArray{Tuple{prod(fuSize), threshold}, T}(undef)
return U, Vᵀ
end
@generated function init_low_rank_jacobian(u::SVector{Lu, T1}, fu::SVector{Lfu, T2},
::Val{threshold}) where {Lu, Lfu, T1, T2, threshold}
T = promote_type(T1, T2)
inner_inits_Vᵀ = [:(zeros(SVector{$Lu, $T})) for i in 1:threshold]
inner_inits_U = [:(zeros(SVector{$Lfu, $T})) for i in 1:threshold]
return quote
Vᵀ = SVector($(inner_inits_Vᵀ...))
U = SVector($(inner_inits_U...))
return U, Vᵀ
end
end
function init_low_rank_jacobian(u, fu, ::Val{threshold}) where {threshold}
Vᵀ = similar(u, threshold, length(u))
U = similar(u, length(fu), threshold)
return U, Vᵀ
end

0 comments on commit fbb5911

Please sign in to comment.