Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Removing GaussianProcesses #129

Merged
merged 1 commit into from
Aug 11, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@ Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
CellularAutomata = "878138dc-5b27-11ea-1a71-cb95d38d6b29"
Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GaussianProcesses = "891a1506-143c-57d2-908e-e1f8e92e6de9"
LIBSVM = "b1bec4e5-fd48-53fe-b0cb-9723c09d164b"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MLJLinearModels = "6ee0df7b-362f-4a72-a706-9e79364fb692"
Expand All @@ -22,7 +21,6 @@ Adapt = "3.3.3"
CellularAutomata = "0.0.2"
Distances = "0.10"
Distributions = "0.24, 0.25"
GaussianProcesses = "0.12"
LIBSVM = "0.8"
MLJLinearModels = "0.5, 0.6, 0.7"
NNlib = "0.8.4"
Expand Down
3 changes: 0 additions & 3 deletions src/ReservoirComputing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ using Adapt
using CellularAutomata
using Distances
using Distributions
using GaussianProcesses
using LIBSVM
using LinearAlgebra
using MLJLinearModels
Expand Down Expand Up @@ -35,7 +34,6 @@ abstract type AbstractOutputLayer end
abstract type AbstractPrediction end
#training methods
abstract type AbstractLinearModel end
abstract type AbstractGaussianProcess end
abstract type AbstractSupportVector end
#should probably move some of these
abstract type AbstractVariation end
Expand Down Expand Up @@ -81,7 +79,6 @@ include("predict.jl")

#general training
include("train/linear_regression.jl")
include("train/gaussian_regression.jl")
include("train/supportvector_regression.jl")

#esn
Expand Down
31 changes: 0 additions & 31 deletions src/predict.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,20 +46,6 @@ function get_prediction(training_method::AbstractLinearModel, output_layer, x)
return output_layer.output_matrix * x
end

#gaussian regression
function get_prediction(training_method::AbstractGaussianProcess, output_layer, x)
out, sigma = zeros(output_layer.out_size), zeros(output_layer.out_size)

for j in 1:(output_layer.out_size)
x_new = reshape(x, length(x), 1)
gr = GaussianProcesses.predict_y(output_layer.output_matrix[j], x_new)
out[j] = gr[1][1]
sigma[j] = gr[2][1]
end

return (out, sigma)
end

#support vector regression
function get_prediction(training_method::LIBSVM.AbstractSVR, output_layer, x)
out = zeros(output_layer.out_size)
Expand All @@ -72,28 +58,11 @@ function get_prediction(training_method::LIBSVM.AbstractSVR, output_layer, x)
return out
end

#creation of matrices for storing gaussian results (outs and sigmas)
function output_storing(training_method::AbstractGaussianProcess,
out_size,
prediction_len,
storing_type)
out = Adapt.adapt(storing_type, zeros(out_size, prediction_len))
sigma = Adapt.adapt(storing_type, zeros(out_size, prediction_len))
return (out, sigma)
end

#single matrix for other training methods
function output_storing(training_method, out_size, prediction_len, storing_type)
return Adapt.adapt(storing_type, zeros(out_size, prediction_len))
end

#storing results for gaussian training, getting also the sigmas
function store_results!(training_method::AbstractGaussianProcess, out, output, i)
output[1][:, i] = out[1]
output[2][:, i] = out[2]
return out[1]
end

#general storing -> single matrix
function store_results!(training_method, out, output, i)
output[:, i] = out
Expand Down
42 changes: 0 additions & 42 deletions src/train/gaussian_regression.jl

This file was deleted.

8 changes: 1 addition & 7 deletions test/esn/test_train.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
using ReservoirComputing, GaussianProcesses, MLJLinearModels, Random, Statistics, LIBSVM
using ReservoirComputing, MLJLinearModels, Random, Statistics, LIBSVM

const res_size = 20
const ts = 0.0:0.1:50.0
Expand All @@ -18,17 +18,11 @@ training_methods = [
StandardRidge(regularization_coeff = reg),
LinearModel(RidgeRegression, regression_kwargs = (; lambda = reg)),
LinearModel(regression = RidgeRegression, regression_kwargs = (; lambda = reg)),
GaussianProcess(MeanZero(), Poly(1.0, 1.0, 2)),
EpsilonSVR(),
]

for t in training_methods
output_layer = train(esn, target_data, t)
output = esn(Predictive(input_data), output_layer)
if t isa GaussianProcess
output = output[1]
else
output = output
end
@test mean(abs.(target_data .- output)) ./ mean(abs.(target_data)) < 0.21
end