데이타를 시각화 하는 과정은 단순하게 자료에 의미를 부여하는 작업입니다.
데이타 사이언티스에게 필요한 필수 능력중 하나로, 단지 자료를 시각적으로
표현하는 것뿐만 아니라 다음과 같이 3가지로 활용 할수 있습니다.
데이타 사이언티스에게 필요한 필수 능력중 하나로, 단지 자료를 시각적으로
표현하는 것뿐만 아니라 다음과 같이 3가지로 활용 할수 있습니다.
- EDA를 위해 활용하고, 데이터의 특징을 찾아 낸다.(DV for EDA)
- 모델의 결과를 분석하고, 비교하여 최종 선택을 한다.(DV for Metrics and Modeling)
- 분석한 데이터에 스토리를 불어 넣어 전달한다. (DV for story & Finals)
Data Visualization 레파지토리는 각종 python 라이브러리 활용뿐만 아니라,
시각화의 기본적인 원리와 위의 3가지 목적에 맞는 코드를 정리하여 활용하는데 있습니다.
- L01_Data Visualization Concept & History
- L02_Data Visualization Which Chart should i use
- L00_DatasetLIst for Seaborn
- L00_Seaborn
- L01_Seaborn_Scatter & Line Plot
- L02_Seaborn_Categorical Data
- L03_Seaborn_Distribution Visualization
- L04_Seaborn_Visualizing Linear Relationships
- L05_Seaborn_Multiple Plot Grid
- L06_Seaborn_Controlling figure aesthetics & Pallette
- PC01_Plotly Plot & Scatter Matrix
- PC02_Plotly Line Plot
- PC03_Plotly Time Series
- PC04_Plotly Area Plot
- PC05_Plotly Bar Charts & Error Bar
- PC06_Plotly Box & Violin Plot
- PC07_Plotly Histogram
- PC08_Plotly Distribution Plot
- PC09_Plotly Heatmaps
- PC10_Plotly Parallel Diagram & Dendrograms
- PC11_Plotly Map
- PC12_Plotly 3D Charts
- PC13_Plotly 기타 Charts 정리중
- PS00_Plotly_Controlling figure,Label, Tick, space, Axes, Legends, Multiple and so on
- M01_Matplotlib Line_Style & Color
- M02_Matplotlib Axis & Label
- M03_Matplotlib Font & Legend
- M04_Matplotlib Multiple Subplots
- M05_Matplotlib Text & Annotation
- M06_Matplotlib Customizing Ticks
- M07_Matplotlib Style
- M08_Matplotlib Bar Plot
- M09_Matplotlib Stem & Box Plot
- M10_Matplotlib Scatter & Bubble Plot
- M11_Matplotlib Coherence Chart
- M12_Matplotlib Error Bar
- M13_Matplotlib pcolor & pcolormesh 2차원 유사 플롯
- M14_Matplotlib Histgrams, Binnings, and Density
- M15_Matplotlib Density and Contour Plots
- M16_Matplotlib Stream Plot & Quiver
- M17_Matplotlib Pie Chart
- M18_Matplotlib Radar Chart & Sankey Diagram
- M19_Matplotlib Three-Dimensional Plotting
- M20_Matplotlib Confusion Matrix chart & ROC_Curve
- F01_Folium Tiles & Markers
- F02_Folium Style
- F03_Folium Dualmap, Minimap, Heatmap
- F04_Folium USA_Unemployment data
- F05_Folium Seoul_data
- F06_Folium South_Korea_Provinces
- F07_Folium South_Korea_Provinces2
- F08_Folium US_county_data
- F09_Folium Interactive Setting
- 이수안컴퓨터연구소
- Matplotlib, https://matplotlib.org/
- Seaborn
- Plotly
- Forium
- Igor Milovanovi, "Python Data Visualization Cookbook", Packt
- Jake VanderPlas, "Python Data Science Handbook", O'Reilly
- Wes Mckinney, "Python for Data Analysis", O'Reilly