Skip to content

An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations

License

Notifications You must be signed in to change notification settings

SebastianM-C/ModelingToolkit.jl

This branch is 1 commit ahead of, 2146 commits behind SciML/ModelingToolkit.jl:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

875e362 · Feb 24, 2024
Feb 14, 2024
Feb 23, 2024
Feb 14, 2024
Feb 14, 2024
Dec 21, 2023
Feb 24, 2024
Feb 22, 2024
Jan 24, 2023
Feb 27, 2018
Oct 8, 2023
Nov 29, 2023
Mar 10, 2021
Aug 28, 2023
Jan 24, 2023
Feb 22, 2024
Feb 24, 2024
Feb 24, 2024

Repository files navigation

ModelingToolkit.jl

Join the chat at https://julialang.zulipchat.com #sciml-bridged Global Docs

codecov Coverage Status Build Status

ColPrac: Contributor's Guide on Collaborative Practices for Community Packages SciML Code Style

ModelingToolkit.jl is a modeling framework for high-performance symbolic-numeric computation in scientific computing and scientific machine learning. It allows for users to give a high-level description of a model for symbolic preprocessing to analyze and enhance the model. ModelingToolkit can automatically generate fast functions for model components like Jacobians and Hessians, along with automatically sparsifying and parallelizing the computations. Automatic transformations, such as index reduction, can be applied to the model to make it easier for numerical solvers to handle.

For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation which contains the unreleased features.

Standard Library

For a standard library of ModelingToolkit components and blocks, check out the ModelingToolkitStandardLibrary

High-Level Examples

First, let's define a second order riff on the Lorenz equations, symbolically lower it to a first order system, symbolically generate the Jacobian function for the numerical integrator, and solve it.

using DifferentialEquations, ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D

@parameters σ ρ β
@variables x(t) y(t) z(t)

eqs = [D(D(x)) ~ σ * (y - x),
    D(y) ~ x *- z) - y,
    D(z) ~ x * y - β * z]

@mtkbuild sys = ODESystem(eqs)

u0 = [D(x) => 2.0,
    x => 1.0,
    y => 0.0,
    z => 0.0]

p ==> 28.0,
    ρ => 10.0,
    β => 8 / 3]

tspan = (0.0, 100.0)
prob = ODEProblem(sys, u0, tspan, p, jac = true)
sol = solve(prob)
using Plots
plot(sol, idxs = (x, y))

Lorenz2

This automatically will have generated fast Jacobian functions, making it more optimized than directly building a function. In addition, we can then use ModelingToolkit to compose multiple ODE subsystems. Now, let's define two interacting Lorenz equations and simulate the resulting Differential-Algebraic Equation (DAE):

using DifferentialEquations, ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D

@parameters σ ρ β
@variables x(t) y(t) z(t)

eqs = [D(x) ~ σ * (y - x),
    D(y) ~ x *- z) - y,
    D(z) ~ x * y - β * z]

@mtkbuild lorenz1 = ODESystem(eqs)
@mtkbuild lorenz2 = ODESystem(eqs)

@variables a(t)
@parameters γ
connections = [0 ~ lorenz1.x + lorenz2.y + a * γ]
@mtkbuild connected = ODESystem(connections, t, [a], [γ], systems = [lorenz1, lorenz2])

u0 = [lorenz1.x => 1.0,
    lorenz1.y => 0.0,
    lorenz1.z => 0.0,
    lorenz2.x => 0.0,
    lorenz2.y => 1.0,
    lorenz2.z => 0.0,
    a => 2.0]

p = [lorenz1.σ => 10.0,
    lorenz1.ρ => 28.0,
    lorenz1.β => 8 / 3,
    lorenz2.σ => 10.0,
    lorenz2.ρ => 28.0,
    lorenz2.β => 8 / 3,
    γ => 2.0]

tspan = (0.0, 100.0)
prob = ODEProblem(connected, u0, tspan, p)
sol = solve(prob)

using Plots
plot(sol, idxs = (a, lorenz1.x, lorenz2.z))

Citation

If you use ModelingToolkit.jl in your research, please cite this paper:

@misc{ma2021modelingtoolkit,
      title={ModelingToolkit: A Composable Graph Transformation System For Equation-Based Modeling},
      author={Yingbo Ma and Shashi Gowda and Ranjan Anantharaman and Chris Laughman and Viral Shah and Chris Rackauckas},
      year={2021},
      eprint={2103.05244},
      archivePrefix={arXiv},
      primaryClass={cs.MS}
}

About

An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations

Resources

License

Citation

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 99.9%
  • TeX 0.1%