Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(docs): improve HPA documentation #6091

Merged
merged 8 commits into from
Dec 6, 2024
116 changes: 94 additions & 22 deletions docs-gb/kubernetes/hpa-rps-autoscaling.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,28 @@ and servers (single-model serving). This will require:
* Configuring HPA manifests to scale Models and the corresponding Server replicas based on the
custom metrics

{% hint style="warning" %}
The Core 2 HPA-based autoscaling has the following constraints/limitations:
* HPA scaling only targets single-model serving, where there is a 1:1 correspondence between
models and servers. Autoscaling for multi-model serving (MMS) is supported for specific models
and workloads via the Core 2 native features described [here](autoscaling.md).
Significant improvements to MMS autoscaling are planned for future releases.
* **Only custom metrics** from Prometheus are supported. Native Kubernetes
resource metrics such as CPU or memory are not. This limitation exists because of HPA's
design: In order to prevent multiple HPA CRs from issuing conflicting scaling instructions,
each HPA CR must exclusively control a set of pods which is disjoint from the pods
controlled by other HPA CRs. In Seldon Core 2, CPU/memory metrics can be used to scale the
number of Server replicas via HPA. However, this also means that the CPU/memory metrics
from the same set of pods can no longer be used to scale the number of model replicas. We
are working on improvements in Core 2 to allow both servers and models to be scaled based on
a single HPA manifest, targeting the Model CR.
* Each Kubernetes cluster supports only one active custom metrics provider. If your cluster
already uses a custom metrics provider different from `prometheus-adapter`, it
will need to be removed before being able to scale Core 2 models and servers via HPA. The
Kubernetes is actively exploring solutions for allowing multiple custom metrics providers to
coexist.
{% endhint %}
lc525 marked this conversation as resolved.
Show resolved Hide resolved

## Installing and configuring the Prometheus Adapter

The role of the Prometheus Adapter is to expose queries on metrics in Prometheus as k8s custom
Expand All @@ -36,6 +58,14 @@ If you are running Prometheus on a different port than the default 9090, you can
prometheus.port=[custom_port]` You may inspect all the options available as helm values by
running `helm show values prometheus-community/prometheus-adapter`

{% hint style="warning" %}
Please check that the `metricsRelistInterval` helm value (default to 1m) works well in your
setup, and update it otherwise. This value needs to be larger than or equal to your Prometheus
scrape interval. The corresponding prometheus adapter command-line argument is
`--metrics-relist-interval`. If the relist interval is set incorrectly, it will lead to some of
the custom metrics being intermittently reported as missing.
{% endhint %}

We now need to configure the adapter to look for the correct prometheus metrics and compute
per-model RPS values. On install, the adapter has created a `ConfigMap` in the same namespace as
itself, named `[helm_release_name]-prometheus-adapter`. In our case, it will be
Expand All @@ -60,19 +90,16 @@ data:
"rules":
-
"seriesQuery": |
{__name__=~"^seldon_model.*_total",namespace!=""}
"seriesFilters":
- "isNot": "^seldon_.*_seconds_total"
- "isNot": "^seldon_.*_aggregate_.*"
{__name__="seldon_model_infer_total",namespace!=""}
"resources":
"overrides":
"model": {group: "mlops.seldon.io", resource: "model"}
"server": {group: "mlops.seldon.io", resource: "server"}
"pod": {resource: "pod"}
"namespace": {resource: "namespace"}
"name":
"matches": "^seldon_model_(.*)_total"
"as": "${1}_rps"
"matches": "seldon_model_infer_total"
"as": "infer_rps"
"metricsQuery": |
sum by (<<.GroupBy>>) (
rate (
Expand All @@ -84,10 +111,37 @@ data:

In this example, a single rule is defined to fetch the `seldon_model_infer_total` metric
from Prometheus, compute its rate over a 1 minute window, and expose this to k8s as the `infer_rps`
lc525 marked this conversation as resolved.
Show resolved Hide resolved
metric, with aggregations at model, server, inference server pod and namespace level.
metric, with aggregations available at model, server, inference server pod and namespace level.

When HPA requests the `infer_rps` metric via the custom metrics API for a specific model,
prometheus-adapter issues a Prometheus query in line with what it is defined in its config.

For the configuration in our example, the query for a model named `irisa0` in namespace
`seldon-mesh` would be:

```
sum by (model) (
rate (
seldon_model_infer_total{model="irisa0", namespace="seldon-mesh"}[1m]
)
)
```

Before updating the ConfigMap, it is important to sanity-check the query by executing it against
lc525 marked this conversation as resolved.
Show resolved Hide resolved
your Prometheus instance. To do so, pick an existing model CR in your Seldon Core 2 install, and
send some inference requests towards it. Then, wait for a period equal to the Prometheus scrape
interval (Prometheus default 1 minute) so that the metric values are updated. Finally, you can
modify the model name and namespace in the query above to match the model you've picked and
execute the query.

A list of all the Prometheus metrics exposed by Seldon Core 2 in relation to Models, Servers and Pipelines is available [here](../metrics/operational.md),
and those may be used when customizing the configuration.
If the query result is non-empty, you may proceed with the next steps, or customize the query
according to your needs and re-test. If the query result is empty, please adjust it until it
returns the expected metric values. Update the `metricsQuery` in the prometheus-adapter
ConfigMap to match.

A list of all the Prometheus metrics exposed by Seldon Core 2 in relation to Models, Servers and
Pipelines is available [here](../metrics/operational.md), and those may be used when customizing
the configuration.

### Understanding prometheus-adapter rule definitions
lc525 marked this conversation as resolved.
Show resolved Hide resolved

Expand All @@ -96,10 +150,20 @@ The rule definition can be broken down in four parts:
* _Discovery_ (the `seriesQuery` and `seriesFilters` keys) controls what Prometheus
metrics are considered for exposure via the k8s custom metrics API.

In the example, all the Seldon Prometheus metrics of the form `seldon_model_*_total` are
considered, excluding metrics pre-aggregated across all models (`.*_aggregate_.*`) as well as
the cummulative infer time per model (`.*_seconds_total`). For RPS, we are only interested in
the model inference count (`seldon_model_infer_total`)
As an alternative to the example above, all the Seldon Prometheus metrics of the form `seldon_model.*_total`
could be considered, followed by excluding metrics pre-aggregated across all models (`.*_aggregate_.*`) as well as
the cummulative infer time per model (`.*_seconds_total`):

```yaml
"seriesQuery": |
{__name__=~"^seldon_model.*_total",namespace!=""}
"seriesFilters":
- "isNot": "^seldon_.*_seconds_total"
- "isNot": "^seldon_.*_aggregate_.*"
...
```

For RPS, we are only interested in the model inference count (`seldon_model_infer_total`)

* _Association_ (the `resources` key) controls the Kubernetes resources that a particular
metric can be attached to or aggregated over.
Expand All @@ -125,8 +189,14 @@ The rule definition can be broken down in four parts:
`seldon_model_infer_total` and expose custom metric endpoints named `infer_rps`, which when
called return the result of a query over the Prometheus metric.

The matching over the Prometheus metric name uses regex group capture expressions (line 22),
which are then be referenced in the custom metric name (line 23).
Instead of a literal match, one could also use regex group capture expressions,
which can then be referenced in the custom metric name:

```yaml
"name":
"matches": "^seldon_model_(.*)_total"
"as": "${1}_rps"
```

* _Querying_ (the `metricsQuery` key) defines how a request for a specific k8s custom metric gets
converted into a Prometheus query.
Expand All @@ -150,7 +220,6 @@ For a complete reference for how `prometheus-adapter` can be configured via the
consult the docs [here](https://github.com/kubernetes-sigs/prometheus-adapter/blob/master/docs/config.md).



Once you have applied any necessary customizations, replace the default prometheus-adapter config
with the new one, and restart the deployment (this restart is required so that prometheus-adapter
picks up the new config):
Expand Down Expand Up @@ -421,7 +490,8 @@ inspecting the corresponding Server HPA CR, or by fetching the metric directly v

* Filtering metrics by additional labels on the prometheus metric:

The prometheus metric from which the model RPS is computed has the following labels:
The prometheus metric from which the model RPS is computed has the following labels managed
by Seldon Core 2:

```c-like
seldon_model_infer_total{
Expand All @@ -440,9 +510,11 @@ inspecting the corresponding Server HPA CR, or by fetching the metric directly v
}
```

If you want the scaling metric to be computed based on inferences with a particular value
for any of those labels, you can add this in the HPA metric config, as in the example
(targeting `method_type="rest"`):
If you want the scaling metric to be computed based on a subset of the Prometheus time
series with particular label values (labels either managed by Seldon Core 2 or added
automatically within your infrastructure), you can add this as a selector the HPA metric
config. This is shown in the following example, which scales only based on the RPS of REST
requests as opposed to REST + gRPC:

```yaml
metrics:
Expand All @@ -461,6 +533,7 @@ inspecting the corresponding Server HPA CR, or by fetching the metric directly v
type: AverageValue
averageValue: "3"
```

* Customize scale-up / scale-down rate & properties by using scaling policies as described in
the [HPA scaling policies docs](https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#configurable-scaling-behavior)

Expand Down Expand Up @@ -592,8 +665,7 @@ into account when setting the HPA policies.
within the set `periodSeconds`) is not recommended because of this.
- Perhaps more importantly, there is no reason to scale faster than the time it takes for
replicas to become available - this is the true maximum rate with which scaling up can
happen anyway. Because the underlying Server replica pods are part of a stateful set, they
are created sequentially by k8s.
happen anyway.

{% code title="hpa-custom-policy.yaml" lineNumbers="true" %}
```yaml
Expand Down
Loading