Skip to content

SemanticComputing/toffee

Repository files navigation

Toffee -- Topical Relevance Feedback Search

Iterative relevance feedback search using topic modeling and user feedback to guide the search towards the topics of interest.

More details can be found in:

Mikko Koho, Erkki Heino, Arttu Oksanen and Eero Hyvönen: Toffee - Semantic Media Search Using Topic Modeling and Relevance Feedback. Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks, CEUR Workshop Proceedings, Monterey, California, USA, October, 2018. Vol 2180. Pre-print PDF

Requirements

Architecture

Toffee system architecture

Running the initial training using the news corpus

docker-compose -f docker-compose-train.yml up

Running locally

Add a file named .env to the repository root with API_KEY= and the Google search API key. The REACT_APP_BACKEND should point to the web service address at the hosting server.

docker-compose build --build-arg 'REACT_APP_BACKEND=http://localhost:5000' frontend
docker-compose up -d

To deploy with several worker and prerender instances: (for docker version < 3.0)

docker-compose build --build-arg 'REACT_APP_BACKEND=http://localhost:5000' frontend
docker-compose up -d
docker-compose scale worker=3 prerender=3

About

Toffee - Topical Relevance Feedback Search

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published