Skip to content

Code for 1st Place Solution in Intracranial Hemorrhage Detection Challenge @ RSNA2019

Notifications You must be signed in to change notification settings

SeuTao/RSNA2019_Intracranial-Hemorrhage-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RSNA Intracranial Hemorrhage Detection

This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challenge.

Citation

@article{wang2021deep,
  title={A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans},
  author={Wang, Xiyue and Shen, Tao and Yang, Sen and Lan, Jun and Xu, Yanming and Wang, Minghui and Zhang, Jing and Han, Xiao},
  journal={NeuroImage: Clinical},
  volume={32},
  pages={102785},
  year={2021},
  publisher={Elsevier}
}

Solution write up: Link.

Solutuoin Overview

image

Dependencies

  • opencv-python==3.4.2
  • scikit-image==0.14.0
  • scikit-learn==0.19.1
  • scipy==1.1.0
  • torch==1.1.0
  • torchvision==0.2.1

CODE

  • 2DNet
  • 3DNet
  • SequenceModel

2D CNN Classifier

Pretrained models

Preprocessing

image

Prepare csv file:

download data.zip: https://drive.google.com/open?id=1buISR_b3HQDU4KeNc_DmvKTYJ1gvj5-3

  1. convert dcm to png
python3 prepare_data.py -dcm_path stage_1_train_images -png_path train_png
python3 prepare_data.py -dcm_path stage_1_test_images -png_path train_png
python3 prepare_data.py -dcm_path stage_2_test_images -png_path test_png
  1. train
python3 train_model.py -backbone DenseNet121_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet121_change_avg_256
python3 train_model.py -backbone DenseNet169_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet169_change_avg_256
python3 train_model.py -backbone se_resnext101_32x4d -img_size 256 -tbs 80 -vbs 40 -save_path se_resnext101_32x4d_256
  1. predict
python3 predict.py -backbone DenseNet121_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet121_change_avg_256
python3 predict.py -backbone DenseNet169_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet169_change_avg_256
python3 predict.py -backbone se_resnext101_32x4d -img_size 256 -tbs 4 -vbs 4 -spth se_resnext101_32x4d_256

After single models training, the oof files will be saved in ./SingleModelOutput(three folders for three pipelines).

After training the sequence model, the final submission will be ./FinalSubmission/final_version/submission_tta.csv

Sequence Models

Sequence Model 1

image

Sequence Model 2

image

Path Setup

Set data path in ./setting.py

download

download [csv.zip]

download [feature samples]

Sequence Model Training

CUDA_VISIBLE_DEVICES=0 python main.py

The final submissions are in the folder ../FinalSubmission/version2/submission_tta.csv

Final Submission

Private Leaderboard:

  • 0.04383

About

Code for 1st Place Solution in Intracranial Hemorrhage Detection Challenge @ RSNA2019

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages