-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconnected_components.py
433 lines (367 loc) · 18.7 KB
/
connected_components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
from copy import deepcopy
from multiprocessing.pool import Pool
import numpy as np
from nnunet.configuration import default_num_threads
from nnunet.evaluation.evaluator import aggregate_scores
from scipy.ndimage import label
import SimpleITK as sitk
from nnunet.paths import maybe_mkdir_p2
from nnunet.utilities.sitk_stuff import copy_geometry
from batchgenerators.utilities.file_and_folder_operations import *
import shutil
def load_remove_save(input_file: str, output_file: str, for_which_classes: list,
minimum_valid_object_size: dict = None):
# Only objects larger than minimum_valid_object_size will be removed. Keys in minimum_valid_object_size must
# match entries in for_which_classes
img_in = sitk.ReadImage(input_file)
img_npy = sitk.GetArrayFromImage(img_in)
volume_per_voxel = float(np.prod(img_in.GetSpacing(), dtype=np.float64))
image, largest_removed, kept_size = remove_all_but_the_largest_connected_component(img_npy, for_which_classes,
volume_per_voxel,
minimum_valid_object_size)
# print(input_file, "kept:", kept_size)
img_out_itk = sitk.GetImageFromArray(image)
img_out_itk = copy_geometry(img_out_itk, img_in)
sitk.WriteImage(img_out_itk, output_file)
return largest_removed, kept_size
def remove_all_but_the_largest_connected_component(image: np.ndarray, for_which_classes: list, volume_per_voxel: float,
minimum_valid_object_size: dict = None):
"""
removes all but the largest connected component, individually for each class
:param image:
:param for_which_classes: can be None. Should be list of int. Can also be something like [(1, 2), 2, 4].
Here (1, 2) will be treated as a joint region, not individual classes (example LiTS here we can use (1, 2)
to use all foreground classes together)
:param minimum_valid_object_size: Only objects larger than minimum_valid_object_size will be removed. Keys in
minimum_valid_object_size must match entries in for_which_classes
:return:
"""
if for_which_classes is None:
for_which_classes = np.unique(image)
for_which_classes = for_which_classes[for_which_classes > 0]
assert 0 not in for_which_classes, "cannot remove background"
largest_removed = {}
kept_size = {}
for c in for_which_classes:
if isinstance(c, (list, tuple)):
c = tuple(c) # otherwise it cant be used as key in the dict
mask = np.zeros_like(image, dtype=bool)
for cl in c:
mask[image == cl] = True
else:
mask = image == c
# get labelmap and number of objects
lmap, num_objects = label(mask.astype(int))
# collect object sizes
object_sizes = {}
for object_id in range(1, num_objects + 1):
object_sizes[object_id] = (lmap == object_id).sum() * volume_per_voxel
largest_removed[c] = None
kept_size[c] = None
if num_objects > 0:
# we always keep the largest object. We could also consider removing the largest object if it is smaller
# than minimum_valid_object_size in the future but we don't do that now.
maximum_size = max(object_sizes.values())
kept_size[c] = maximum_size
for object_id in range(1, num_objects + 1):
# we only remove objects that are not the largest
if object_sizes[object_id] != maximum_size:
# we only remove objects that are smaller than minimum_valid_object_size
remove = True
if minimum_valid_object_size is not None:
remove = object_sizes[object_id] < minimum_valid_object_size[c]
if remove:
image[(lmap == object_id) & mask] = 0
if largest_removed[c] is None:
largest_removed[c] = object_sizes[object_id]
else:
largest_removed[c] = max(largest_removed[c], object_sizes[object_id])
return image, largest_removed, kept_size
def load_postprocessing(json_file):
'''
loads the relevant part of the pkl file that is needed for applying postprocessing
:param pkl_file:
:return:
'''
a = load_json(json_file)
if 'min_valid_object_sizes' in a.keys():
min_valid_object_sizes = ast.literal_eval(a['min_valid_object_sizes'])
else:
min_valid_object_sizes = None
return a['for_which_classes'], min_valid_object_sizes
def determine_postprocessing(base, gt_labels_folder, raw_subfolder_name="validation_raw",
temp_folder="temp",
final_subf_name="validation_final", processes=default_num_threads,
dice_threshold=0, debug=False,
advanced_postprocessing=False,
pp_filename="postprocessing.json"):
"""
:param base:
:param gt_labels_folder: subfolder of base with niftis of ground truth labels
:param raw_subfolder_name: subfolder of base with niftis of predicted (non-postprocessed) segmentations
:param temp_folder: used to store temporary data, will be deleted after we are done here undless debug=True
:param final_subf_name: final results will be stored here (subfolder of base)
:param processes:
:param dice_threshold: only apply postprocessing if results is better than old_result+dice_threshold (can be used as eps)
:param debug: if True then the temporary files will not be deleted
:return:
"""
# lets see what classes are in the dataset
classes = [int(i) for i in load_json(join(base, raw_subfolder_name, "summary.json"))['results']['mean'].keys() if
int(i) != 0]
folder_all_classes_as_fg = join(base, temp_folder + "_allClasses")
folder_per_class = join(base, temp_folder + "_perClass")
if isdir(folder_all_classes_as_fg):
shutil.rmtree(folder_all_classes_as_fg)
if isdir(folder_per_class):
shutil.rmtree(folder_per_class)
# multiprocessing rules
p = Pool(processes)
assert isfile(join(base, raw_subfolder_name, "summary.json")), "join(base, raw_subfolder_name) does not " \
"contain a summary.json"
# these are all the files we will be dealing with
fnames = subfiles(join(base, raw_subfolder_name), suffix=".nii.gz", join=False)
# make output and temp dir
maybe_mkdir_p2(folder_all_classes_as_fg)
maybe_mkdir_p2(folder_per_class)
maybe_mkdir_p2(join(base, final_subf_name))
pp_results = {}
pp_results['dc_per_class_raw'] = {}
pp_results['dc_per_class_pp_all'] = {} # dice scores after treating all foreground classes as one
pp_results['dc_per_class_pp_per_class'] = {} # dice scores after removing everything except larges cc
# independently for each class after we already did dc_per_class_pp_all
pp_results['for_which_classes'] = []
pp_results['min_valid_object_sizes'] = {}
validation_result_raw = load_json(join(base, raw_subfolder_name, "summary.json"))['results']
pp_results['num_samples'] = len(validation_result_raw['all'])
validation_result_raw = validation_result_raw['mean']
if advanced_postprocessing:
# first treat all foreground classes as one and remove all but the largest foreground connected component
results = []
for f in fnames:
predicted_segmentation = join(base, raw_subfolder_name, f)
# now remove all but the largest connected component for each class
output_file = join(folder_all_classes_as_fg, f)
results.append(p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, (classes,)),)))
results = [i.get() for i in results]
# aggregate max_size_removed and min_size_kept
max_size_removed = {}
min_size_kept = {}
for tmp in results:
mx_rem, min_kept = tmp[0]
for k in mx_rem:
if mx_rem[k] is not None:
if max_size_removed.get(k) is None:
max_size_removed[k] = mx_rem[k]
else:
max_size_removed[k] = max(max_size_removed[k], mx_rem[k])
for k in min_kept:
if min_kept[k] is not None:
if min_size_kept.get(k) is None:
min_size_kept[k] = min_kept[k]
else:
min_size_kept[k] = min(min_size_kept[k], min_kept[k])
print("foreground vs background, smallest valid object size was", min_size_kept[tuple(classes)])
print("removing only objects smaller than that...")
else:
min_size_kept = None
# we need to rerun the step from above, now with the size constraint
pred_gt_tuples = []
results = []
# first treat all foreground classes as one and remove all but the largest foreground connected component
for f in fnames:
predicted_segmentation = join(base, raw_subfolder_name, f)
# now remove all but the largest connected component for each class
output_file = join(folder_all_classes_as_fg, f)
results.append(
p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, (classes,), min_size_kept),)))
pred_gt_tuples.append([output_file, join(gt_labels_folder, f)])
_ = [i.get() for i in results]
# evaluate postprocessed predictions
_ = aggregate_scores(pred_gt_tuples, labels=classes,
json_output_file=join(folder_all_classes_as_fg, "summary.json"),
json_author="Fabian", num_threads=processes)
# now we need to figure out if doing this improved the dice scores. We will implement that defensively in so far
# that if a single class got worse as a result we won't do this. We can change this in the future but right now I
# prefer to do it this way
validation_result_PP_test = load_json(join(folder_all_classes_as_fg, "summary.json"))['results']['mean']
for c in classes:
dc_raw = validation_result_raw[str(c)]['Dice']
dc_pp = validation_result_PP_test[str(c)]['Dice']
pp_results['dc_per_class_raw'][str(c)] = dc_raw
pp_results['dc_per_class_pp_all'][str(c)] = dc_pp
# true if new is better
do_fg_cc = False
comp = [pp_results['dc_per_class_pp_all'][str(cl)] > (pp_results['dc_per_class_raw'][str(cl)] + dice_threshold) for
cl in classes]
before = np.mean([pp_results['dc_per_class_raw'][str(cl)] for cl in classes])
after = np.mean([pp_results['dc_per_class_pp_all'][str(cl)] for cl in classes])
print("Foreground vs background")
print("before:", before)
print("after: ", after)
if any(comp):
# at least one class improved - yay!
# now check if another got worse
# true if new is worse
any_worse = any(
[pp_results['dc_per_class_pp_all'][str(cl)] < pp_results['dc_per_class_raw'][str(cl)] for cl in classes])
if not any_worse:
pp_results['for_which_classes'].append(classes)
if min_size_kept is not None:
pp_results['min_valid_object_sizes'].update(deepcopy(min_size_kept))
do_fg_cc = True
print("Removing all but the largest foreground region improved results!")
print('for_which_classes', classes)
print('min_valid_object_sizes', min_size_kept)
else:
# did not improve things - don't do it
pass
if len(classes) > 1:
# now depending on whether we do remove all but the largest foreground connected component we define the source dir
# for the next one to be the raw or the temp dir
if do_fg_cc:
source = folder_all_classes_as_fg
else:
source = join(base, raw_subfolder_name)
if advanced_postprocessing:
# now run this for each class separately
results = []
for f in fnames:
predicted_segmentation = join(source, f)
output_file = join(folder_per_class, f)
results.append(p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, classes),)))
results = [i.get() for i in results]
# aggregate max_size_removed and min_size_kept
max_size_removed = {}
min_size_kept = {}
for tmp in results:
mx_rem, min_kept = tmp[0]
for k in mx_rem:
if mx_rem[k] is not None:
if max_size_removed.get(k) is None:
max_size_removed[k] = mx_rem[k]
else:
max_size_removed[k] = max(max_size_removed[k], mx_rem[k])
for k in min_kept:
if min_kept[k] is not None:
if min_size_kept.get(k) is None:
min_size_kept[k] = min_kept[k]
else:
min_size_kept[k] = min(min_size_kept[k], min_kept[k])
print("classes treated separately, smallest valid object sizes are")
print(min_size_kept)
print("removing only objects smaller than that")
else:
min_size_kept = None
# rerun with the size thresholds from above
pred_gt_tuples = []
results = []
for f in fnames:
predicted_segmentation = join(source, f)
output_file = join(folder_per_class, f)
results.append(p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, classes, min_size_kept),)))
pred_gt_tuples.append([output_file, join(gt_labels_folder, f)])
_ = [i.get() for i in results]
# evaluate postprocessed predictions
_ = aggregate_scores(pred_gt_tuples, labels=classes,
json_output_file=join(folder_per_class, "summary.json"),
json_author="Fabian", num_threads=processes)
if do_fg_cc:
old_res = deepcopy(validation_result_PP_test)
else:
old_res = validation_result_raw
# these are the new dice scores
validation_result_PP_test = load_json(join(folder_per_class, "summary.json"))['results']['mean']
for c in classes:
dc_raw = old_res[str(c)]['Dice']
dc_pp = validation_result_PP_test[str(c)]['Dice']
pp_results['dc_per_class_pp_per_class'][str(c)] = dc_pp
print(c)
print("before:", dc_raw)
print("after: ", dc_pp)
if dc_pp > (dc_raw + dice_threshold):
pp_results['for_which_classes'].append(int(c))
if min_size_kept is not None:
pp_results['min_valid_object_sizes'].update({c: min_size_kept[c]})
print("Removing all but the largest region for class %d improved results!" % c)
print('min_valid_object_sizes', min_size_kept)
else:
print("Only one class present, no need to do each class separately as this is covered in fg vs bg")
if not advanced_postprocessing:
pp_results['min_valid_object_sizes'] = None
print("done")
print("for which classes:")
print(pp_results['for_which_classes'])
print("min_object_sizes")
print(pp_results['min_valid_object_sizes'])
pp_results['validation_raw'] = raw_subfolder_name
pp_results['validation_final'] = final_subf_name
# now that we have a proper for_which_classes, apply that
pred_gt_tuples = []
results = []
for f in fnames:
predicted_segmentation = join(base, raw_subfolder_name, f)
# now remove all but the largest connected component for each class
output_file = join(base, final_subf_name, f)
results.append(p.starmap_async(load_remove_save, (
(predicted_segmentation, output_file, pp_results['for_which_classes'],
pp_results['min_valid_object_sizes']),)))
pred_gt_tuples.append([output_file,
join(gt_labels_folder, f)])
_ = [i.get() for i in results]
# evaluate postprocessed predictions
_ = aggregate_scores(pred_gt_tuples, labels=classes,
json_output_file=join(base, final_subf_name, "summary.json"),
json_author="Fabian", num_threads=processes)
pp_results['min_valid_object_sizes'] = str(pp_results['min_valid_object_sizes'])
save_json(pp_results, join(base, pp_filename))
# delete temp
if not debug:
shutil.rmtree(folder_per_class)
shutil.rmtree(folder_all_classes_as_fg)
p.close()
p.join()
print("done")
def apply_postprocessing_to_folder(input_folder: str, output_folder: str, for_which_classes: list,
min_valid_object_size:dict=None, num_processes=8):
"""
applies removing of all but the largest connected component to all niftis in a folder
:param min_valid_object_size:
:param min_valid_object_size:
:param input_folder:
:param output_folder:
:param for_which_classes:
:param num_processes:
:return:
"""
maybe_mkdir_p2(output_folder)
p = Pool(num_processes)
nii_files = subfiles(input_folder, suffix=".nii.gz", join=False)
input_files = [join(input_folder, i) for i in nii_files]
out_files = [join(output_folder, i) for i in nii_files]
results = p.starmap_async(load_remove_save, zip(input_files, out_files, [for_which_classes] * len(input_files),
[min_valid_object_size] * len(input_files)))
res = results.get()
p.close()
p.join()
if __name__ == "__main__":
inputs = [r'']
for_which_classes = [1, 2, 3, 5, 13]
for input in inputs:
output = input + '-pped'
for_which_classes = None
apply_postprocessing_to_folder(input, output, for_which_classes)