-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d86bf03
commit 080b424
Showing
9 changed files
with
558 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
#!/bin/bash | ||
# | ||
# Set the job name and wall time limit | ||
#BSUB -J nagl | ||
#BSUB -W 168:00 | ||
# | ||
# Set the output and error output paths. | ||
#BSUB -o %J.o | ||
#BSUB -e %J.e | ||
# | ||
# Set any cpu options. | ||
#BSUB -n 1 -R "span[ptile=1]" | ||
#BSUB -M 16 | ||
|
||
# Enable conda | ||
. ~/.bashrc | ||
|
||
# Use the right conda environment | ||
conda activate nagl | ||
|
||
rm -rf labelled && mkdir labelled | ||
|
||
# Compute the AM1 partial charges and multi-conformer WBO for each molecule. | ||
for name in "enamine-10240.sdf.gz" \ | ||
"enamine-50240.sdf.gz" \ | ||
"NCI-Open_2012-05-01.sdf.gz" \ | ||
"ChEMBL_eps_78.sdf.gz" \ | ||
"ZINC_eps_78.sdf.gz" \ | ||
"OpenFF-Industry-Benchmark-Season-1-v1-1.smi" | ||
do | ||
|
||
nagl label --input "processed/${name}" \ | ||
--output "labelled/${name%%.*}.sqlite" \ | ||
--n-workers 250 \ | ||
--batch-size 250 \ | ||
--worker-type lsf \ | ||
--lsf-memory 4 \ | ||
--lsf-walltime "32:00" \ | ||
--lsf-queue "cpuqueue" \ | ||
--lsf-env "nagl" | ||
|
||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
#!/bin/bash | ||
# | ||
# Set the job name and wall time limit | ||
#BSUB -J nagl | ||
#BSUB -W 24:00 | ||
# | ||
# Set the output and error output paths. | ||
#BSUB -o %J.o | ||
#BSUB -e %J.e | ||
# | ||
# Set any cpu options. | ||
#BSUB -n 20 -R "span[ptile=20]" | ||
#BSUB -M 2 | ||
|
||
# Enable conda | ||
. ~/.bashrc | ||
|
||
# Use the right conda environment | ||
conda activate nagl | ||
|
||
# Filter the NCI and Enamine sets according to the criteria proposed by | ||
# Bleiziffer, Schaller and Riniker (see 10.1021/acs.jcim.7b00663) | ||
rm -rf processed && mkdir processed | ||
|
||
for name in "enamine-10240" "enamine-50240" "NCI-Open_2012-05-01" | ||
do | ||
|
||
nagl prepare filter --input "raw/${name}.sdf.gz" \ | ||
--output "processed/${name}.sdf.gz" \ | ||
--strip-ions \ | ||
--n-processes 20 | ||
|
||
done | ||
|
||
# We don't need to filter the Rinker sets are they are provided in their | ||
# processed form or the OpenFF data set as this was curated by hand. | ||
for name in "ChEMBL_eps_78.sdf.gz" \ | ||
"ZINC_eps_78.sdf.gz" \ | ||
"OpenFF-Industry-Benchmark-Season-1-v1-1.smi" | ||
do | ||
|
||
cp "raw/${name}" "processed/${name}" | ||
|
||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
#!/bin/bash | ||
# | ||
# Set the job name and wall time limit | ||
#BSUB -J am1[1-486]%60 | ||
#BSUB -W 02:00 | ||
# | ||
# Set the output and error output paths. | ||
#BSUB -o %J.o | ||
#BSUB -e %J.e | ||
# | ||
# Set any gpu options. | ||
#BSUB -q gpuqueue | ||
#BSUB -gpu num=1:j_exclusive=yes:mode=shared:mps=no: | ||
# | ||
#BSUB -M 5 | ||
|
||
# Enable conda | ||
. ~/.bashrc | ||
|
||
conda activate nagl | ||
conda env export > conda-env-h-params.yml | ||
|
||
# Launch my program. | ||
module load cuda/11.0 | ||
|
||
export batch_size=(256 512) | ||
|
||
export n_gcn_layers=(3 4 5) | ||
export n_gcn_hidden_features=(32 64 128) | ||
|
||
export n_am1_layers=(2 3 4) | ||
export n_am1_hidden_features=(32 64 128) | ||
|
||
export learning_rate=(0.001 0.0001 0.00001) | ||
|
||
export indices=( $( | ||
python utilities/job-to-matrix-index.py $LSB_JOBINDEX \ | ||
${#batch_size[@]} \ | ||
${#n_gcn_layers[@]} \ | ||
${#n_gcn_hidden_features[@]} \ | ||
${#n_am1_layers[@]} \ | ||
${#n_am1_hidden_features[@]} \ | ||
${#learning_rate[@]} | ||
) ) | ||
|
||
echo "MATRIX INDICES=${indices[*]}" | ||
|
||
python train-am1-q-model.py --train-set "data-sets/labelled/enamine-50240.sqlite" \ | ||
--train-batch-size ${batch_size[${indices[0]}]} \ | ||
--val-set "data-sets/labelled/OpenFF-Industry-Benchmark-Season-1-v1-1.sqlite" \ | ||
--n-gcn-layers ${n_gcn_layers[${indices[1]}]} \ | ||
--n-gcn-hidden-features ${n_gcn_hidden_features[${indices[2]}]} \ | ||
--n-am1-layers ${n_am1_layers[${indices[3]}]} \ | ||
--n-am1-hidden-features ${n_am1_hidden_features[${indices[4]}]} \ | ||
--learning-rate ${learning_rate[${indices[5]}]} \ | ||
--n-epochs 175 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
#!/bin/bash | ||
# | ||
# Set the job name and wall time limit | ||
#BSUB -J am1 | ||
#BSUB -W 02:00 | ||
# | ||
# Set the output and error output paths. | ||
#BSUB -o %J.o | ||
#BSUB -e %J.e | ||
# | ||
# Set any gpu options. | ||
#BSUB -q gpuqueue | ||
#BSUB -gpu num=1:j_exclusive=yes:mode=shared:mps=no: | ||
# | ||
#BSUB -M 5 | ||
|
||
# Enable conda | ||
. ~/.bashrc | ||
|
||
conda activate nagl | ||
conda env export > conda-env.yml | ||
|
||
# Launch my program. | ||
module load cuda/11.0 | ||
|
||
python train-am1-q-model.py --train-set "data-sets/labelled/ChEMBL_eps_78.sqlite" \ | ||
--train-set "data-sets/labelled/ZINC_eps_78.sqlite" \ | ||
--train-batch-size 256 \ | ||
--val-set "data-sets/labelled/enamine-10240.sqlite" \ | ||
--test-set "data-sets/labelled/OpenFF-Industry-Benchmark-Season-1-v1-1.sqlite" \ | ||
--n-gcn-layers 5 \ | ||
--n-gcn-hidden-features 128 \ | ||
--n-am1-layers 2 \ | ||
--n-am1-hidden-features 64 \ | ||
--learning-rate 0.001 \ | ||
--n-epochs 400 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
from typing import Dict | ||
|
||
import numpy | ||
import pytorch_lightning as pl | ||
import torch | ||
from openff.toolkit.topology import Molecule | ||
|
||
from nagl.datasets import DGLMoleculeDataLoader, DGLMoleculeDataset | ||
from nagl.features import AtomConnectivity, AtomFormalCharge, AtomicElement, BondOrder | ||
from nagl.lightning import DGLMoleculeLightningModel | ||
from nagl.nn import SequentialLayers | ||
from nagl.nn.modules import ConvolutionModule, ReadoutModule | ||
from nagl.nn.pooling import PoolAtomFeatures | ||
from nagl.nn.postprocess import ComputePartialCharges | ||
|
||
|
||
def label_function(molecule: Molecule) -> Dict[str, torch.Tensor]: | ||
"""Generates a set of train / val / test labels for a given molecule.""" | ||
from simtk import unit | ||
|
||
# Generate a set of ELF10 conformers. | ||
molecule.generate_conformers(n_conformers=800, rms_cutoff=0.05 * unit.angstrom) | ||
molecule.apply_elf_conformer_selection() | ||
|
||
partial_charges = [] | ||
|
||
for conformer in molecule.conformers: | ||
|
||
molecule.assign_partial_charges("am1-mulliken", use_conformers=[conformer]) | ||
|
||
partial_charges.append( | ||
molecule.partial_charges.value_in_unit(unit.elementary_charge) | ||
) | ||
|
||
return { | ||
"am1-charges": torch.from_numpy(numpy.mean(partial_charges, axis=0)).float() | ||
} | ||
|
||
|
||
def main(): | ||
|
||
print(torch.seed()) | ||
|
||
# Define the atom / bond features of interest. | ||
atom_features = [ | ||
AtomicElement(["C", "O", "H"]), | ||
AtomConnectivity(), | ||
AtomFormalCharge([-1, 0, 1]), | ||
] | ||
bond_features = [ | ||
BondOrder(), | ||
] | ||
|
||
# Compute the total length of the input atomic feature vector | ||
n_atom_features = sum(len(feature) for feature in atom_features) | ||
|
||
# Load in the training and test data | ||
training_smiles = ["CO", "CCO", "CCCO", "CCCCO"] | ||
training_data = DGLMoleculeDataset.from_smiles( | ||
training_smiles, | ||
atom_features, | ||
bond_features, | ||
label_function, | ||
enumerate_resonance=True, | ||
) | ||
training_loader = DGLMoleculeDataLoader( | ||
training_data, batch_size=len(training_smiles), shuffle=False | ||
) | ||
|
||
test_smiles = [ | ||
"CCCCCCCCCO", | ||
] | ||
test_loader = DGLMoleculeDataLoader( | ||
DGLMoleculeDataset.from_smiles( | ||
test_smiles, | ||
atom_features, | ||
bond_features, | ||
label_function, | ||
enumerate_resonance=True, | ||
), | ||
batch_size=len(test_smiles), | ||
shuffle=False, | ||
) | ||
|
||
# Define the model. | ||
n_gcn_layers = 5 | ||
n_gcn_hidden_features = 128 | ||
|
||
n_am1_layers = 2 | ||
n_am1_hidden_features = 64 | ||
|
||
learning_rate = 0.001 | ||
|
||
model = DGLMoleculeLightningModel( | ||
convolution_module=ConvolutionModule( | ||
architecture="SAGEConv", | ||
in_feats=n_atom_features, | ||
hidden_feats=[n_gcn_hidden_features] * n_gcn_layers, | ||
), | ||
readout_modules={ | ||
# The keys of the readout modules should correspond to keys in the | ||
# label dictionary. | ||
"am1-charges": ReadoutModule( | ||
pooling_layer=PoolAtomFeatures(), | ||
readout_layers=SequentialLayers( | ||
in_feats=n_gcn_hidden_features, | ||
hidden_feats=[n_am1_hidden_features] * n_am1_layers + [2], | ||
activation=["ReLU"] * n_am1_layers + ["Identity"], | ||
), | ||
postprocess_layer=ComputePartialCharges(), | ||
) | ||
}, | ||
learning_rate=learning_rate, | ||
) | ||
|
||
print(model) | ||
|
||
# Train the model | ||
n_epochs = 100 | ||
|
||
n_gpus = 0 if not torch.cuda.is_available() else 1 | ||
print(f"Using {n_gpus} GPUs") | ||
|
||
trainer = pl.Trainer(gpus=n_gpus, min_epochs=n_epochs, max_epochs=n_epochs) | ||
|
||
trainer.fit(model, train_dataloaders=training_loader) | ||
trainer.test(model, test_dataloaders=test_loader) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.