Skip to content

This repository is for the paper "Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding" (CVPR 2023)

Notifications You must be signed in to change notification settings

TAU-VAILab/isbertblind

Repository files navigation

Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding

This repository is for the paper

Morris Alper, Michael Fiman, & Hadar Averbuch-Elor (2023). Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (arXiv link)

For more information, see our project page at https://isbertblind.github.io.

Code

This repository allows can be used for the following:

  • Apply Stroop Probing on a given sentence with different options
  • Compare MLM and Stroop Probing for different types of models on various tasks

Stroop Probing

Setting up environment

Build the stroop-probing package locally by running the following commands:

# clone into this repo
git clone https://github.com/TAU-VAILab/isbertblind.git
# install the Stroop Probing package locally
pip install -e ./isbertblind

Probing

An example for usage of Stroop Probing:

COLORS = ['red', 'orange', 'yellow', 'green', 'blue', 'black', 'white', 'grey', 'brown']
SENTENCE = 'A MASK colored banana'

from probing import CLIPStroopProbe

clip_sp = CLIPStroopProbe('openai/clip-vit-base-patch32')
scores = clip_sp.score_from_options(SENTENCE, COLORS, as_dict=True)
# scores = 'red': 0.87503874, 'orange': 0.8977335, 'yellow': 0.94582725, 'green': 0.8791876, 'blue': 0.8688055, 'black': 0.8739696, 'white': 0.8991788, 'grey': 0.880877, 'brown': 0.89924145} 
# 'blue': 0.79435384, 'black': 0.79852706, 'white': 0.83922243, 'grey': 0.81859416, 'brown': 0.8265251}

print(f"{SENTENCE.replace('MASK', max(scores, key=scores.get))}")
# A yellow colored banana

The following models are supported:

  • CLIP: CLIPStroopProbe - uses huggingface checkpoints supporting CLIPModel.from_pretrained()
  • FLAVA: FLAVAStroopProbe - uses huggingface checkpoints supporting FlavaModel.from_pretrained()
  • TEXT: TextStroopProbe - uses huggingface checkpoints supporting AutoModel.from_pretrained() which use a pooler output layer

Probing comparison

Setting up environment

# clone into this repo
git clone https://github.com/TAU-VAILab/isbertblind.git
# install required packages for using this repo
pip install -r requirements.txt

Tasks

This repository currently supports two types of tasks:

choice

This type of task is used to test association between a given set of objects and a given set of words. For example, this type of task can be used for color or shape association prediction.

Use the config file define experiment setup parameters, set of prompts to test and list of models to use. An example for a task config can be found in the ./configs/shapes.json file.

This sort of task requires a csv file with the following columns: ["word","gt","options"]. An example of a dataset for using this type of task, please see the datasets/shape_association.csv file.

cloze

This type of task is used to solve cloze tasks. For example, this kind of task can be found in the Children’s Book Test (CBT) cloze dataset.

Use the config file define experiment setup parameters, set of words to use as PAD options, and list of models to use. An example for a task config can be found in the ./configs/cbt_v_sample.json file.

This sort of task requires a csv file with the following columns: ["sentence","gt","options"]. An example of a dataset for using this type of task, please see the datasets/cbt_v_sample.csv file.

Note that since the Children’s Book Test (CBT) Dataset is not ours, we only show a sample of a few examples in this repository.

Compare models on dataset

To run the script defined by the config file, run the following command:

python run_on_dataset.py path_to_config.json

Output per model and prompt and a summary of the experiment will be written to the output folder defined in the config file setup.

Datasets

The ShapeIt dataset of shape associations introduced by our paper is available at Kaggle. The other datasets used in our paper are publicly available and can be accessed at their respective project pages.

Other datasets used for the different VLU and NLU tasks which were used in our paper can be found in the following links:

Citation

If you find this code or our data helpful in your research or work, please cite the following paper.

@InProceedings{alper2023:is-bert-blind,
    author    = {Morris Alper and Michael Fiman and Hadar Averbuch-Elor},
    title     = {Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2023}
}

About

This repository is for the paper "Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding" (CVPR 2023)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published