forked from nka77/DAHiTra
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add files for reproducibility on xBD data
- Loading branch information
Showing
13 changed files
with
6,637 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# Based on https://github.com/pytorch/pytorch/pull/3740 | ||
import torch | ||
import math | ||
|
||
|
||
class AdamW(torch.optim.Optimizer): | ||
"""Implements AdamW algorithm. | ||
It has been proposed in `Fixing Weight Decay Regularization in Adam`_. | ||
Arguments: | ||
params (iterable): iterable of parameters to optimize or dicts defining | ||
parameter groups | ||
lr (float, optional): learning rate (default: 1e-3) | ||
betas (Tuple[float, float], optional): coefficients used for computing | ||
running averages of gradient and its square (default: (0.9, 0.999)) | ||
eps (float, optional): term added to the denominator to improve | ||
numerical stability (default: 1e-8) | ||
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | ||
.. Fixing Weight Decay Regularization in Adam: | ||
https://arxiv.org/abs/1711.05101 | ||
""" | ||
|
||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, | ||
weight_decay=0): | ||
defaults = dict(lr=lr, betas=betas, eps=eps, | ||
weight_decay=weight_decay) | ||
super(AdamW, self).__init__(params, defaults) | ||
|
||
def step(self, closure=None): | ||
"""Performs a single optimization step. | ||
Arguments: | ||
closure (callable, optional): A closure that reevaluates the model | ||
and returns the loss. | ||
""" | ||
loss = None | ||
if closure is not None: | ||
loss = closure() | ||
|
||
for group in self.param_groups: | ||
for p in group['params']: | ||
if p.grad is None: | ||
continue | ||
grad = p.grad.data | ||
if grad.is_sparse: | ||
raise RuntimeError('AdamW does not support sparse gradients, please consider SparseAdam instead') | ||
|
||
state = self.state[p] | ||
|
||
# State initialization | ||
if len(state) == 0: | ||
state['step'] = 0 | ||
# Exponential moving average of gradient values | ||
state['exp_avg'] = torch.zeros_like(p.data) | ||
# Exponential moving average of squared gradient values | ||
state['exp_avg_sq'] = torch.zeros_like(p.data) | ||
|
||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | ||
beta1, beta2 = group['betas'] | ||
|
||
state['step'] += 1 | ||
|
||
# according to the paper, this penalty should come after the bias correction | ||
# if group['weight_decay'] != 0: | ||
# grad = grad.add(group['weight_decay'], p.data) | ||
|
||
# Decay the first and second moment running average coefficient | ||
exp_avg.mul_(beta1).add_(1 - beta1, grad) | ||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | ||
|
||
denom = exp_avg_sq.sqrt().add_(group['eps']) | ||
|
||
bias_correction1 = 1 - beta1 ** state['step'] | ||
bias_correction2 = 1 - beta2 ** state['step'] | ||
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 | ||
|
||
# w = w - wd * lr * w | ||
if group['weight_decay'] != 0: | ||
p.data.add_(-group['weight_decay'] * group['lr'], p.data) | ||
|
||
# w = w - lr * w.grad | ||
p.data.addcdiv_(-step_size, exp_avg, denom) | ||
|
||
# w = w - wd * lr * w - lr * w.grad | ||
# See http://www.fast.ai/2018/07/02/adam-weight-decay/ | ||
|
||
return loss |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
OUTPUT_DIR: '' | ||
LOG_DIR: '' | ||
GPUS: [0,] | ||
WORKERS: 4 | ||
PRINT_FREQ: 20 | ||
AUTO_RESUME: False | ||
PIN_MEMORY: True | ||
RANK: 0 | ||
|
||
# Cudnn related params | ||
CUDNN: | ||
BENCHMARK: True | ||
DETERMINISTIC: False | ||
ENABLED: True | ||
|
||
# common params for NETWORK | ||
MODEL: | ||
NAME: 'dual-hrnet' | ||
PRETRAINED: './Checkpoints/HRNet/hrnetv2_w32_imagenet_pretrained.pth' | ||
USE_FPN: False | ||
IS_DISASTER_PRED: False | ||
IS_SPLIT_LOSS: True | ||
FUSE_CONV_K_SIZE: 1 | ||
|
||
# high_resoluton_net related params for segmentation | ||
EXTRA: | ||
PRETRAINED_LAYERS: ['*'] | ||
STEM_INPLANES: 64 | ||
FINAL_CONV_KERNEL: 1 | ||
WITH_HEAD: True | ||
|
||
STAGE1: | ||
NUM_MODULES: 1 | ||
NUM_BRANCHES: 1 | ||
NUM_BLOCKS: [4] | ||
NUM_CHANNELS: [64] | ||
BLOCK: 'BOTTLENECK' | ||
FUSE_METHOD: 'SUM' | ||
|
||
STAGE2: | ||
NUM_MODULES: 1 | ||
NUM_BRANCHES: 2 | ||
NUM_BLOCKS: [4, 4] | ||
NUM_CHANNELS: [32, 64] | ||
BLOCK: 'BASIC' | ||
FUSE_METHOD: 'SUM' | ||
|
||
STAGE3: | ||
NUM_MODULES: 4 | ||
NUM_BRANCHES: 3 | ||
NUM_BLOCKS: [4, 4, 4] | ||
NUM_CHANNELS: [32, 64, 128] | ||
BLOCK: 'BASIC' | ||
FUSE_METHOD: 'SUM' | ||
|
||
STAGE4: | ||
NUM_MODULES: 3 | ||
NUM_BRANCHES: 4 | ||
NUM_BLOCKS: [4, 4, 4, 4] | ||
NUM_CHANNELS: [32, 64, 128, 256] | ||
BLOCK: 'BASIC' | ||
FUSE_METHOD: 'SUM' | ||
|
||
#_C.MODEL.EXTRA= CN(new_allowed=True) | ||
|
||
LOSS: | ||
CLASS_BALANCE: True | ||
|
||
# DATASET related params | ||
DATASET: | ||
NUM_CLASSES: 4 | ||
|
||
# training | ||
TRAIN: | ||
# Augmentation | ||
FLIP: True | ||
MULTI_SCALE: [0.8, 1.2] | ||
CROP_SIZE: [512, 512] | ||
|
||
LR_FACTOR: 0.1 | ||
LR_STEP: [90, 110] | ||
LR: 0.05 | ||
EXTRA_LR: 0.001 | ||
|
||
OPTIMIZER: 'sgd' | ||
MOMENTUM: 0.9 | ||
WD: 0.0001 | ||
NESTEROV: False | ||
IGNORE_LABEL: -1 | ||
|
||
NUM_EPOCHS: 500 | ||
RESUME: False | ||
|
||
BATCH_SIZE_PER_GPU: 16 | ||
SHUFFLE: True | ||
# only using some training samples | ||
NUM_SAMPLES: 0 | ||
CLASS_WEIGHTS: [0.4, 1.2, 1.2, 1.2] | ||
|
||
# testing | ||
TEST: | ||
BATCH_SIZE_PER_GPU: 32 | ||
# only testing some samples | ||
NUM_SAMPLES: 0 | ||
|
||
MODEL_FILE: '' | ||
FLIP_TEST: False | ||
MULTI_SCALE: False | ||
CENTER_CROP_TEST: False | ||
SCALE_LIST: [1] | ||
|
||
# debug | ||
DEBUG: | ||
DEBUG: False | ||
SAVE_BATCH_IMAGES_GT: False | ||
SAVE_BATCH_IMAGES_PRED: False | ||
SAVE_HEATMAPS_GT: False | ||
SAVE_HEATMAPS_PRED: False |
Oops, something went wrong.