Skip to content

code of Generalized Delayed Feedback Model with Post-Click Information in Recommender Systems, NeurIPS 2022

License

Notifications You must be signed in to change notification settings

ThyrixYang/gdfm_nips22

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generalized Delayed Feedback Model with Post-Click Information in Recommender Systems

Cite

@inproceedings{gdfm_neurips22,
  author    = {Jia-Qi Yang and
               De-Chuan Zhan},
  title     = {Generalized Delayed Feedback Model with Post-Click Information in Recommender Systems},
  booktitle = {NeurIPS 2022},
  year      = {2022},
}

arxiv version paper

Reproduce results in the paper

Replace seed in config.py to run multiple times and calculate the mean and standard variance.

Criteo Dataset

Replace the data path in criteo_data.py

_local_path = "/path/to/data.txt"

Pretrain

Note that a checkpoint of pretrained model is provided in ./pretrain_model If you want to train a new one, delete the checkpoint then run with params_name = "criteo_pretrain"

Set params_name = "criteo_pretrain" in main_criteo.py

{'dataset': 'criteo', 'method': 'pretrain', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 2, 'd_nt': 1, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'weight_decay': 1e-06, 'log_steps': 500, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category', 'current_seed': 0} MetricAccumulator: acc: 0.821753 auc: 0.815830 prauc: 0.610097 ll: 0.412973 mce: 0.036591 ece: 0.011126

Vanilla (Cross-Entropy, CE)

Set params_name = "criteo_ce" in main_criteo.py

{'dataset': 'criteo', 'method': 'ce', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 2, 'log_steps': 500, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'weight_decay': 1e-06, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category', 'current_seed': 0} MetricAccumulator: acc: 0.822805 auc: 0.820661 prauc: 0.615451 ll: 0.409003 mce: 0.042475 ece: 0.012404

Oracle

Set params_name = "criteo_oracle" in main_criteo.py

{'dataset': 'criteo', 'method': 'oracle', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 2, 'log_steps': 500, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'weight_decay': 1e-06, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category', 'current_seed': 0} MetricAccumulator: acc: 0.829567 auc: 0.841372 prauc: 0.642293 ll: 0.389459 mce: 0.039867 ece: 0.008993

GDFM

{'dataset': 'criteo', 'method': 'gdfm', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 2, 'd_nt': 7, 'log_steps': 500, 'y_reg_weight': 0.01, 'nt': [0, 360, 900, 3600, 86400, 604800, 2592000], 'alpha': 2, 'beta': 1, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'weight_decay': 1e-06, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category', 'current_seed': 0} MetricAccumulator: acc: 0.826368 auc: 0.834982 prauc: 0.631021 ll: 0.396029 mce: 0.043117 ece: 0.008507

Taobao Dataset

Replace the data path in taobao_data.py

_local_path = "/path/to/data.txt"

Pretrain

Note that a checkpoint of pretrained model is provided in ./pretrain_model If you want to train a new one, delete the checkpoint then run with params_name = "taobao_pretrain"

{'dataset': 'taobao', 'method': 'pretrain', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 6, 'd_nt': 5, 'weight_decay': 1e-05, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'log_steps': 500, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category'} MetricAccumulator: acc: 0.981932 auc: 0.701016 prauc: 0.049348 ll: 0.085431 mce: 0.538143 ece: 0.294352

Oracle

{'dataset': 'taobao', 'method': 'oracle', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 6, 'd_nt': 5, 'nt': [120, 600, 7200, 86400, 259200], 'alpha': 2, 'beta': 1, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'weight_decay': 1e-06, 'log_steps': 500, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category'} MetricAccumulator: acc: 0.982081 auc: 0.723500 prauc: 0.063134 ll: 0.083188 mce: 0.540411 ece: 0.135927

GDFM

{'dataset': 'taobao', 'method': 'gdfm', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 6, 'd_nt': 5, 'nt': [120, 600, 7200, 86400, 259200], 'alpha': 2, 'beta': 1, 'y_reg_weight': 0.01, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'weight_decay': 1e-06, 'log_steps': 500, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category'} MetricAccumulator: acc: 0.982088 auc: 0.719759 prauc: 0.061672 ll: 0.083906 mce: 0.711116 ece: 0.119731

Vanilla (Cross-Entropy, CE)

{'dataset': 'taobao', 'method': 'ce', 'hidden_size': 128, 'y_class_num': 2, 'd_size': 6, 'd_nt': 5, 'nt': [120, 600, 7200, 86400, 259200], 'alpha': 2, 'beta': 1, 'device': 'cuda', 'seed': 0, 'num_workers': 16, 'weight_decay': 1e-06, 'log_steps': 500, 'test_batch_size': 20480, 'batch_size': 4096, 'update_steps': 1, 'pretrain_epochs': 1, 'lr': 0.001, 'optimizer': 'Adam', 'd_type': 'category'} MetricAccumulator: acc: 0.982075 auc: 0.715640 prauc: 0.060076 ll: 0.083921 mce: 0.421531 ece: 0.146333

About

code of Generalized Delayed Feedback Model with Post-Click Information in Recommender Systems, NeurIPS 2022

Resources

License

Stars

Watchers

Forks

Releases

No releases published