This repository contains the source code for the paper "3D-MTR: A 3D Reconstruction Algorithm for Deep Understanding of Images"
Author email: [email protected]
figure of data distribution
We use the renderings of ShapeNet in our experiments,which are available below:
- ShapeNet rendering images: https://www.shapenet.org/
git clone https://github.com/clfs0003/3D-MTR
cd UAGAN
pip install -r 3D-MTR_requirements.txt
You need to update hyperparametersthe of the model and path of the datasets :
parser.add_argument('--image_dir', type=str, default='./dataset/img', help='input RGB image path')
parser.add_argument('--mask_dir', type=str, default='./dataset/mask', help='input mask path')
parser.add_argument('--lr', type=float, default='0.0002', help='learning rate')
parser.add_argument('--batch_size', type=int, default='5', help='batch_size in training')
parser.add_argument("--epoch", type=int, default=600, help="epoch in training")
###results of ShapeNet:
###results of Reapir Net in ShapeNet:
###results of MAE in ShapeNet:
To train 3D-MTR, you can simply use the following command:
python3 main_repair.py
python3 main_rec.py
Note: Since our paper has not been published yet, we only show the model structure and training code. When the paper is published, we will publish the full work of the paper. Welcome scholars to discuss and exchange.
This project is open sourced under MIT license.