-
Notifications
You must be signed in to change notification settings - Fork 586
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #191 from Jeralyn123/master
add swnet by Jeralyn123
- Loading branch information
Showing
2 changed files
with
304 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
"""Efficient Neural Network""" | ||
import torch | ||
import torch.nn as nn | ||
|
||
__all__ = ['ENet', 'get_enet', 'get_enet_citys'] | ||
|
||
|
||
class ENet(nn.Module): | ||
"""Efficient Neural Network""" | ||
|
||
def __init__(self, nclass, backbone='', aux=False, jpu=False, pretrained_base=None, **kwargs): | ||
super(ENet, self).__init__() | ||
self.initial = InitialBlock(13, **kwargs) | ||
#block 1: | ||
self.bottleneck1_0 = Bottleneck(16, 16, 64, downsampling=True, **kwargs) | ||
self.bottleneck1_1 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_2 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_3 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_4 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_5 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_6 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_7 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_8 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_9 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck1_10 = Bottleneck(64, 16, 64, **kwargs) | ||
#blcok 2: | ||
self.bottleneck2_0 = Bottleneck(64, 32, 128, downsampling=True, **kwargs) | ||
self.bottleneck2_1 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck2_2 = Bottleneck(128, 32, 128, dilation=2, **kwargs) | ||
self.bottleneck2_3 = Bottleneck(128, 32, 128, asymmetric=True, **kwargs) | ||
self.bottleneck2_4 = Bottleneck(128, 32, 128, dilation=4, **kwargs) | ||
self.bottleneck2_5 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck2_6 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck2_7 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck2_8 = Bottleneck(128, 32, 128, dilation=8, **kwargs) | ||
self.bottleneck2_9 = Bottleneck(128, 32, 128, asymmetric=True, **kwargs) | ||
self.bottleneck2_10 = Bottleneck(128, 32, 128, dilation=16, **kwargs) | ||
#block 3: | ||
self.bottleneck3_0 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck3_1 = Bottleneck(128, 32, 128, dilation=2, **kwargs) | ||
self.bottleneck3_2 = Bottleneck(128, 32, 128, asymmetric=True, **kwargs) | ||
self.bottleneck3_3 = Bottleneck(128, 32, 128, dilation=4, **kwargs) | ||
self.bottleneck3_4 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck3_5 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck3_6 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck3_7 = Bottleneck(128, 32, 128, **kwargs) | ||
self.bottleneck3_8 = Bottleneck(128, 32, 128, dilation=8, **kwargs) | ||
self.bottleneck3_9 = Bottleneck(128, 32, 128, asymmetric=True, **kwargs) | ||
self.bottleneck3_10 = Bottleneck(128, 32, 128, dilation=16, **kwargs) | ||
#block 4: | ||
self.bottleneck4_0 = UpsamplingBottleneck(128, 16, 64, **kwargs) | ||
self.bottleneck4_1 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_2 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_3 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_4 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_5 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_6 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_7 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_8 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_9 = Bottleneck(64, 16, 64, **kwargs) | ||
self.bottleneck4_10 = Bottleneck(64, 16, 64, **kwargs) | ||
#block 5: | ||
self.bottleneck5_0 = UpsamplingBottleneck(64, 4, 16, **kwargs) | ||
self.bottleneck5_1 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_2 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_3 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_4 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_5 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_6 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_7 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_8 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_9 = Bottleneck(16, 4, 16, **kwargs) | ||
self.bottleneck5_10 = Bottleneck(16, 4, 16, **kwargs) | ||
#block 6: | ||
self.fullconv = nn.ConvTranspose2d(16, nclass, 2, 2, bias=False) | ||
|
||
self.__setattr__('exclusive', ['bottleneck1_0', 'bottleneck1_1', 'bottleneck1_2', 'bottleneck1_3', | ||
'bottleneck1_4', 'bottleneck1_5', 'bottleneck1_6', 'bottleneck1_7', | ||
'bottleneck1_8', 'bottleneck1_9', 'bottleneck1_10','bottleneck2_0', | ||
'bottleneck2_1', 'bottleneck2_2', 'bottleneck2_3', 'bottleneck2_4', | ||
'bottleneck2_5', 'bottleneck2_6', 'bottleneck2_7', 'bottleneck2_8', | ||
'bottleneck2_9', 'bottleneck2_10','bottleneck3_0', 'bottleneck3_1', | ||
'bottleneck3_2', 'bottleneck3_3', 'bottleneck3_4', 'bottleneck3_5', | ||
'bottleneck3_6', 'bottleneck3_7', 'bottleneck3_8', 'bottleneck3_9', | ||
'bottleneck3_10','bottleneck4_0', 'bottleneck4_1', 'bottleneck4_2', | ||
'bottleneck4_3', 'bottleneck4_4', 'bottleneck4_5', 'bottleneck4_6', | ||
'bottleneck4_7', 'bottleneck4_8', 'bottleneck4_9', 'bottleneck4_10', | ||
'bottleneck5_0', 'bottleneck5_1', 'bottleneck5_2', 'bottleneck5_3', | ||
'bottleneck5_4', 'bottleneck5_5', 'bottleneck5_6', 'bottleneck5_7', | ||
'bottleneck5_8', 'bottleneck5_9', 'bottleneck5_10','fullconv']) | ||
|
||
def forward(self, x): | ||
# init | ||
x = self.initial(x) | ||
|
||
# stage 1 | ||
x, max_indices1 = self.bottleneck1_0(x) | ||
x = self.bottleneck1_1(x) | ||
x = self.bottleneck1_2(x) | ||
x = self.bottleneck1_3(x) | ||
x = self.bottleneck1_4(x) | ||
x = self.bottleneck1_5(x) | ||
x = self.bottleneck1_6(x) | ||
x = self.bottleneck1_7(x) | ||
x = self.bottleneck1_8(x) | ||
x = self.bottleneck1_9(x) | ||
x = self.bottleneck1_10(x) | ||
# stage 2 | ||
x, max_indices2 = self.bottleneck2_0(x) | ||
x = self.bottleneck2_1(x) | ||
x = self.bottleneck2_2(x) | ||
x = self.bottleneck2_3(x) | ||
x = self.bottleneck2_4(x) | ||
x = self.bottleneck2_5(x) | ||
x = self.bottleneck2_6(x) | ||
x = self.bottleneck2_7(x) | ||
x = self.bottleneck2_8(x) | ||
x = self.bottleneck2_9(x) | ||
x = self.bottleneck2_10(x) | ||
# stage 3 | ||
x = self.bottleneck3_0(x) | ||
x = self.bottleneck3_1(x) | ||
x = self.bottleneck3_2(x) | ||
x = self.bottleneck3_3(x) | ||
x = self.bottleneck3_4(x) | ||
x = self.bottleneck3_5(x) | ||
x = self.bottleneck3_6(x) | ||
x = self.bottleneck3_7(x) | ||
x = self.bottleneck3_8(x) | ||
x = self.bottleneck3_9(x) | ||
x = self.bottleneck3_10(x) | ||
|
||
# stage 4 | ||
x = self.bottleneck4_0(x, max_indices2) | ||
x = self.bottleneck4_1(x) | ||
x = self.bottleneck4_2(x) | ||
x = self.bottleneck4_3(x) | ||
x = self.bottleneck4_4(x) | ||
x = self.bottleneck4_5(x) | ||
x = self.bottleneck4_6(x) | ||
x = self.bottleneck4_7(x) | ||
x = self.bottleneck4_8(x) | ||
x = self.bottleneck4_9(x) | ||
x = self.bottleneck4_10(x) | ||
# stage 5 | ||
x = self.bottleneck5_0(x, max_indices1) | ||
x = self.bottleneck5_1(x) | ||
x = self.bottleneck5_2(x) | ||
x = self.bottleneck5_3(x) | ||
x = self.bottleneck5_4(x) | ||
x = self.bottleneck5_5(x) | ||
x = self.bottleneck5_6(x) | ||
x = self.bottleneck5_7(x) | ||
x = self.bottleneck5_8(x) | ||
x = self.bottleneck5_9(x) | ||
x = self.bottleneck5_10(x) | ||
# out | ||
x = self.fullconv(x) | ||
return tuple([x]) | ||
|
||
|
||
class InitialBlock(nn.Module): | ||
"""ENet initial block""" | ||
|
||
def __init__(self, out_channels, norm_layer=nn.BatchNorm2d, **kwargs): | ||
super(InitialBlock, self).__init__() | ||
self.conv = nn.Conv2d(3, out_channels, 3, 2, 1, bias=False) | ||
self.maxpool = nn.MaxPool2d(2, 2) | ||
self.bn = norm_layer(out_channels + 3) | ||
self.act = nn.RReLU() | ||
|
||
def forward(self, x): | ||
x_conv = self.conv(x) | ||
x_pool = self.maxpool(x) | ||
x = torch.cat([x_conv, x_pool], dim=1) | ||
x = self.bn(x) | ||
x = self.act(x) | ||
return x | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
"""Bottlenecks include regular, asymmetric, downsampling, dilated""" | ||
|
||
def __init__(self, in_channels, inter_channels, out_channels, dilation=1, asymmetric=False, | ||
downsampling=False, norm_layer=nn.BatchNorm2d, **kwargs): | ||
super(Bottleneck, self).__init__() | ||
self.downsamping = downsampling | ||
if downsampling: | ||
self.maxpool = nn.MaxPool2d(2, 2, return_indices=True) | ||
self.conv_down = nn.Sequential( | ||
nn.Conv2d(in_channels, out_channels, 1, bias=False), | ||
norm_layer(out_channels) | ||
) | ||
|
||
self.conv1 = nn.Sequential( | ||
nn.Conv2d(in_channels, inter_channels, 1, bias=False), | ||
norm_layer(inter_channels), | ||
nn.RReLU() | ||
) | ||
|
||
if downsampling: | ||
self.conv2 = nn.Sequential( | ||
nn.Conv2d(inter_channels, inter_channels, 2, stride=2, bias=False), | ||
norm_layer(inter_channels), | ||
nn.RReLU() | ||
) | ||
else: | ||
if asymmetric: | ||
self.conv2 = nn.Sequential( | ||
nn.Conv2d(inter_channels, inter_channels, (5, 1), padding=(2, 0), bias=False), | ||
nn.Conv2d(inter_channels, inter_channels, (1, 5), padding=(0, 2), bias=False), | ||
norm_layer(inter_channels), | ||
nn.RReLU() | ||
) | ||
else: | ||
self.conv2 = nn.Sequential( | ||
nn.Conv2d(inter_channels, inter_channels, 3, dilation=dilation, padding=dilation, bias=False), | ||
norm_layer(inter_channels), | ||
nn.RReLU() | ||
) | ||
self.conv3 = nn.Sequential( | ||
nn.Conv2d(inter_channels, out_channels, 1, bias=False), | ||
norm_layer(out_channels), | ||
nn.Dropout2d(0.1) | ||
) | ||
self.act = nn.RReLU() | ||
|
||
def forward(self, x): | ||
identity = x | ||
if self.downsamping: | ||
identity, max_indices = self.maxpool(identity) | ||
identity = self.conv_down(identity) | ||
|
||
out = self.conv1(x) | ||
out = self.conv2(out) | ||
out = self.conv3(out) | ||
out = self.act(out + identity) | ||
|
||
if self.downsamping: | ||
return out, max_indices | ||
else: | ||
return out | ||
|
||
|
||
class UpsamplingBottleneck(nn.Module): | ||
"""upsampling Block""" | ||
|
||
def __init__(self, in_channels, inter_channels, out_channels, norm_layer=nn.BatchNorm2d, **kwargs): | ||
super(UpsamplingBottleneck, self).__init__() | ||
self.conv = nn.Sequential( | ||
nn.Conv2d(in_channels, out_channels, 1, bias=False), | ||
norm_layer(out_channels) | ||
) | ||
self.upsampling = nn.MaxUnpool2d(2) | ||
|
||
self.block = nn.Sequential( | ||
nn.Conv2d(in_channels, inter_channels, 1, bias=False), | ||
norm_layer(inter_channels), | ||
nn.RReLU(), | ||
nn.ConvTranspose2d(inter_channels, inter_channels, 2, 2, bias=False), | ||
norm_layer(inter_channels), | ||
nn.RReLU(), | ||
nn.Conv2d(inter_channels, out_channels, 1, bias=False), | ||
norm_layer(out_channels), | ||
nn.Dropout2d(0.1) | ||
) | ||
self.act = nn.RReLU() | ||
|
||
def forward(self, x, max_indices): | ||
out_up = self.conv(x) | ||
out_up = self.upsampling(out_up, max_indices) | ||
|
||
out_ext = self.block(x) | ||
out = self.act(out_up + out_ext) | ||
return out | ||
|
||
|
||
def get_enet(dataset='citys', backbone='', pretrained=False, root='~/.torch/models', pretrained_base=True, **kwargs): | ||
acronyms = { | ||
'pascal_voc': 'pascal_voc', | ||
'pascal_aug': 'pascal_aug', | ||
'ade20k': 'ade', | ||
'coco': 'coco', | ||
'citys': 'citys', | ||
} | ||
from core.data.dataloader import datasets | ||
model = ENet(datasets[dataset].NUM_CLASS, backbone=backbone, pretrained_base=pretrained_base, **kwargs) | ||
if pretrained: | ||
from .model_store import get_model_file | ||
device = torch.device(kwargs['local_rank']) | ||
model.load_state_dict(torch.load(get_model_file('enet_%s' % (acronyms[dataset]), root=root), | ||
map_location=device)) | ||
return model | ||
|
||
|
||
def get_enet_citys(**kwargs): | ||
return get_enet('citys', '', **kwargs) | ||
|
||
|
||
if __name__ == '__main__': | ||
img = torch.randn(1, 3, 512, 512) | ||
model = get_enet_citys() | ||
output = model(img) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters