Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Double DiD inference #14

Merged
merged 5 commits into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: fastdid
Type: Package
Title: Fast Staggered Difference-in-Difference Estimators
Version: 1.0.2
Version: 1.0.3
Date: 2024-10-25
Authors@R: c(
person("Lin-Tung","Tsai",
Expand Down
8 changes: 8 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,11 @@
# fastdid 1.0.4

- Fixed Double DiD inference: account for stolastic part of the double DiD weight

# fastdid 1.0.3

- Fixed Check for CRAN

# fastdid 1.0.2

- Fixed Typo for CRAN
Expand Down
51 changes: 27 additions & 24 deletions R/aggregate_gt.R
Original file line number Diff line number Diff line change
Expand Up @@ -13,22 +13,24 @@ aggregate_gt_outcome <- function(gt_result, aux, p){

#get aggregation scheme from g-t to target parameters
agg_sch <- get_agg_sch(gt_result, aux, p)

if(!p$event_specific | is.na(p$cohortvar2)){
att <- gt_result$att
inf_func <- gt_result$inf_func %*% t(agg_sch$agg_weights)
} else {
att <- agg_sch$es_weight %*% gt_result$att
inf_func <- gt_result$inf_func %*% t(agg_sch$agg_weights %*% agg_sch$es_weight)

att <- gt_result$att
inf_func <- gt_result$inf_func

if(p$event_specific & !is.na(p$cohortvar2)){
es_weight <- agg_sch$es_sto_weight+agg_sch$es_det_weight
es_inf_weights <- get_weight_influence(att, agg_sch$pre_es_group_time, agg_sch$es_sto_weight, aux, p)
att <- (es_weight) %*% att
inf_func <- (inf_func %*% t(es_weight)) + es_inf_weights
}

#get att
agg_att <- agg_sch$agg_weights %*% att

#get influence function matrix

inf_weights <- get_weight_influence(att, agg_sch, aux, p)
inf_matrix <- inf_func + inf_weights
inf_weights <- get_weight_influence(att, agg_sch$group_time, agg_sch$agg_weights, aux, p)
inf_matrix <- (inf_func %*% t(agg_sch$agg_weights)) + inf_weights

#get se
agg_se <- get_se(inf_matrix, aux, p)
Expand Down Expand Up @@ -63,36 +65,40 @@ get_agg_sch <- function(gt_result, aux, p){
#get the event-specific matrix, and available ggts
if(p$event_specific & !is.na(p$cohortvar2)){
es <- get_es_scheme(group_time, aux, p)
pre_es_group_time <- group_time
pre_es_group_time[, pg := NULL]
group_time <- es$group_time #some gt may not have availble effect (ex: g1 == g2)
es_weight <- as.matrix(es$es_weight)
es_det_weight <- as.matrix(es$es_det_weight)
es_sto_weight <- as.matrix(es$es_sto_weight)
} else {
es_weight <- NULL
es_det_weight <- NULL
es_sto_weight <- NULL
pre_es_group_time <- NULL
}

#choose the target based on aggregation type
tg <- get_agg_targets(group_time, p)
group_time <- tg$group_time
targets <- tg$targets


#get aggregation weights
agg_weights <- data.table()
for(tar in targets){ #the order matters

group_time[, weight := 0] #weight is 0 if not a target
group_time[target == tar & used, weight := pg/sum(pg)]
target_weights <- group_time[, .(weight)] |> transpose()

agg_weights <- rbind(agg_weights, target_weights)
}
group_time[, pg := NULL]

agg_weights <- as.matrix(agg_weights)

return(list(agg_weights = agg_weights, #a matrix of each target and gt's weight in it
targets = targets,
group_time = group_time,
es_weight = es_weight))
pre_es_group_time = pre_es_group_time,
es_det_weight = es_det_weight,
es_sto_weight = es_sto_weight))
}

#get the target parameters
Expand Down Expand Up @@ -135,9 +141,7 @@ get_agg_targets <- function(group_time, p){

# influence function ------------------------------------------------------------

get_weight_influence <- function(att, agg_sch, aux, p){

group <- agg_sch$group_time
get_weight_influence <- function(att, group, agg_weights, aux, p){

id_dt <- data.table(weight = aux$weights/sum(aux$weights), G = aux$dt_inv[, G])
pg_dt <- id_dt[, .(pg = sum(weight)), by = "G"]
Expand All @@ -156,25 +160,25 @@ get_weight_influence <- function(att, agg_sch, aux, p){
}

if(!p$parallel){
inf_weights <- sapply(asplit(agg_sch$agg_weights, 1), function (x){
inf_weights <- sapply(asplit(agg_weights, 1), function (x){
get_weight_influence_param(x, group, att, aux, p)
})
} else {
inf_weights <- matrix(unlist(mclapply(asplit(agg_sch$agg_weights, 1), function (x){
inf_weights <- matrix(unlist(mclapply(asplit(agg_weights, 1), function (x){
get_weight_influence_param(x, group, att, aux, p)
})), ncol = length(agg_sch$targets))
})), ncol = dim(agg_weights)[1])
}


return(inf_weights)

}

#influence from weight calculation
get_weight_influence_param <- function(agg_weights, group, gt_att, aux, p) {

keepers <- which(agg_weights != 0)
group <- group[keepers,]
if(nrow(group) == 0){return(rep(0, length(aux$weights)))} #for direct double did

#moving this outside will create a g*t*id matrix, not really worth the memory
keepers_matrix <- as.matrix(aux$weights*sapply(1:nrow(group), function(g){as.integer(aux$dt_inv[, G] == group[g,G]) - group[g,pg]}))

Expand All @@ -185,7 +189,6 @@ get_weight_influence_param <- function(agg_weights, group, gt_att, aux, p) {
# return the influence function for the weights
inf_weight <- (if1 - if2) %*% as.vector(gt_att[keepers])
inf_weight[abs(inf_weight) < sqrt(.Machine$double.eps)*10] <- 0 #fill zero

return(inf_weight)
}

Expand Down
28 changes: 15 additions & 13 deletions R/double_did.R
Original file line number Diff line number Diff line change
Expand Up @@ -104,9 +104,10 @@ get_es_scheme <- function(group_time, aux, p){
valid_ggt <- which(!sapply(es_weight_list, is.null))
es_group_time <- es_group_time[valid_ggt] #remove the ones without
es_weight_list <- es_weight_list[valid_ggt]
es_weight <- do.call(rbind, es_weight_list) #not sure if the dim is right
es_det_weight <- do.call(rbind, lapply(es_weight_list, \(x){x$det}))
es_sto_weight <- do.call(rbind, lapply(es_weight_list, \(x){x$sto}))

return(list(group_time = es_group_time, es_weight = es_weight))
return(list(group_time = es_group_time, es_det_weight = es_det_weight, es_sto_weight = es_sto_weight))

}

Expand All @@ -115,7 +116,8 @@ get_es_ggt_weight <- function(ggt, group_time, aux, p){

group_time <- copy(group_time) #avoid accidental modification

group_time[, weight := 0] #reset
group_time[, det_weight := 0] #reset
group_time[, sto_weight := 0] #reset
t <- group_time[ggt, time]
g1 <- group_time[ggt, G1]
g2 <- group_time[ggt, G2]
Expand All @@ -125,7 +127,7 @@ get_es_ggt_weight <- function(ggt, group_time, aux, p){

if(t < g2){ #direct pure effect

group_time[ggt, weight := 1] #just use the observed effect
group_time[ggt, det_weight := 1] #just use the observed effect

} else if(g1 < g2) { #imputation = treat-pre + (control-post - control-pre)

Expand All @@ -146,9 +148,9 @@ get_es_ggt_weight <- function(ggt, group_time, aux, p){
if(sum(tb) == 0 | sum(cp) == 0 | sum(cb) == 0){return(NULL)}

#assign the weights
group_time[tb, weight := pg/sum(pg)]
group_time[cp, weight := pg/sum(pg)]
group_time[cb, weight := -pg/sum(pg)]
group_time[tb, det_weight := 1]
group_time[cp, sto_weight := pg/sum(pg)]
group_time[cb, sto_weight := -pg/sum(pg)]


} else if (g1 > g2) { #double did = (treat-post - treat-base) - (control-post - control-pre)
Expand All @@ -171,14 +173,14 @@ get_es_ggt_weight <- function(ggt, group_time, aux, p){
if(sum(tp) == 0 | sum(tb) == 0 | sum(cp) == 0 | sum(cb) == 0){return(NULL)}

#assign the weights
group_time[tp, weight := pg/sum(pg)]
group_time[tb, weight := -pg/sum(pg)]
group_time[cp, weight := -pg/sum(pg)]
group_time[cb, weight := pg/sum(pg)]
group_time[tp, det_weight := 1]
group_time[tb, det_weight := -1]
group_time[cp, sto_weight := -pg/sum(pg)]
group_time[cb, sto_weight := pg/sum(pg)]

}

if(all(group_time[, weight] == 0)){return(NULL)}
return(group_time[, weight])
if(all(group_time[, det_weight+sto_weight] == 0)){return(NULL)} #not redundant!
return(list(det = group_time[, det_weight], sto = group_time[, sto_weight]))

}
3 changes: 2 additions & 1 deletion R/global.R
Original file line number Diff line number Diff line change
Expand Up @@ -12,5 +12,6 @@ utils::globalVariables(c('.','agg_weight','att','att_cont','att_treat','attgt','
"copy", "validate", "max_control_cohort_diff", "anticipation", "min_control_cohort_diff", "base_period", "post", "att_ciub", "att_cilb", "cband", "alpha",
"G2", "G1", "mg", "cohort1", "cohort2", "event_time_1", "event_time_2",
"D2", "attgt2", "event", "atu2", "y01", "y10", "y11", "tau2", "parallel",
"tp", "cp", "tb", "cb", "no_na", "event_stagger", "double_control_option"))
"tp", "cp", "tb", "cb", "no_na", "event_stagger", "double_control_option",
"det_weight", "sto_weight"))

13 changes: 4 additions & 9 deletions cran-comments.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,7 @@
## Resubmission
This is a resubmission. In this version I have:

* Update the package name in DESCRIPTION.

* Change the titles of vignette to be more meaningful.

* Re-scale the image in vignette misc.

## R CMD check results

0 errors | 0 warnings | 0 note

## Fix CRAN Check

Remove tracemem() call in tests to avoid failing CRAN check on linux.
Binary file added development/fastdid_1.0.3.tar.gz
Binary file not shown.
Loading
Loading