-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
"""Test walking imitation environment.""" | ||
|
||
import os | ||
import numpy as np | ||
from flybody.tasks.constants import ( | ||
_WALK_CONTROL_TIMESTEP, | ||
_WALK_PHYSICS_TIMESTEP) | ||
from flybody.fly_envs import walk_imitation | ||
|
||
|
||
expect_obs_names = ['accelerometer', | ||
'actuator_activation', | ||
'appendages_pos', | ||
'force', | ||
'gyro', | ||
'joints_pos', | ||
'joints_vel', | ||
'touch', | ||
'velocimeter', | ||
'world_zaxis', | ||
'ref_displacement', | ||
'ref_root_quat'] | ||
expect_obs_names = ['walker/' + s for s in expect_obs_names] | ||
expect_num_act = 59 | ||
|
||
# Create artificial trajectory: walking straight at 1 cm/s. | ||
n_steps = 200 | ||
ctrl_timestep = 0.002 | ||
qpos = np.zeros((n_steps, 7)) | ||
qpos[:, 0] = np.arange(0, n_steps*ctrl_timestep, ctrl_timestep) | ||
qpos[:, [2, 3]] = [0.14355, 1.] | ||
qvel = np.zeros((n_steps, 6)) | ||
qvel[:, 0] = 1. # Speed: 1 cm/s. | ||
snippet = {'qpos': qpos, 'qvel': qvel} | ||
|
||
|
||
def test_can_create_env_inference_mode(): | ||
|
||
# ref_path not provided, task will run in inference mode. | ||
env = walk_imitation(terminal_com_dist=float('inf')) | ||
|
||
obs_spec = env.observation_spec() | ||
assert list(obs_spec) == expect_obs_names | ||
|
||
n_act = env.action_spec().shape | ||
assert n_act == (expect_num_act,) | ||
|
||
# Load trajectory to task. | ||
env.task._traj_generator.set_next_trajectory( | ||
snippet['qpos'], snippet['qvel']) | ||
timestep = env.reset() | ||
for name in expect_obs_names: | ||
observation = timestep.observation[name] | ||
assert isinstance(observation, (float, np.ndarray)) | ||
|
||
assert np.isclose(env.control_timestep(), _WALK_CONTROL_TIMESTEP) | ||
assert np.isclose(env.physics.timestep(), _WALK_PHYSICS_TIMESTEP) | ||
|
||
|
||
def test_can_step_env_inference_mode(): | ||
|
||
# ref_path not provided, task will run in inference mode. | ||
env = walk_imitation(terminal_com_dist=float('inf')) | ||
# Load trajectory to task. | ||
env.task._traj_generator.set_next_trajectory( | ||
snippet['qpos'], snippet['qvel']) | ||
timestep = env.reset() | ||
|
||
for _ in range(100): | ||
action = np.random.uniform(-0.5, 0.5, expect_num_act) | ||
timestep = env.step(action) | ||
assert timestep.reward == 1. # At test-time, reward is 1. | ||
|
||
# For local testing only. | ||
if 'MUJOCO_GL' in os.environ and os.environ['MUJOCO_GL'] == 'egl': | ||
_ = env.physics.render() |