Suite of experiments for running Deep Reinforcement Learning for control of Probabilistic Boolean Networks.
- CUDA 11.3+
- Python 3.9+
- Create a python environment using PIP:
For the last line, use
python3 -m venv .env source .env/bin/activate
.\env\Scripts\activate
if on Windows. - Install PyTorch:
python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
- Install the package and its dependencies dependencies:
python -m pip install -r requirements.txt
- Use
train_ddqn.py
to train a DDQN agent. It's a command line utility so you can check out what you can do with it using--help
. E.g.:python train_ddqn.py --time-steps 400_000 --env-name n28 --env envs/n28.pkl
- Use
train_sb3.py
to train a Stable Baselines 3 agent. It's a command line utility so you can check out what you can do with it using--help
. E.g.:python train_sb3.py --time-steps 400_000 --env-name n28 --env envs/n28.pkl
Principal developer: Evangelos Chatzaroulas (Alternate e-mail).