Fei Xie, Wankou Yang, Chunyu Wang, Lei Chu, Yue Cao, Chao Ma, Wenjun Zeng
⭐ The implementation for the SuperSBT, you can also refer to this github repository.
⭐ SuperSBT is the improved version of the SBT which is published in CVPR 2022 Correlation-Aware Deep Tracking .
[Pretrained Weight] [Models] [Raw Results]
SuperSBT adopts a hierarchical architecture with a local modeling layer to enhance shallow-level features. A unified relation modeling is proposed to remove complex handcrafted layer pattern designs. SuperSBT is further improved by masked image modeling pre-training, integrating temporal modeling, and equipping with dedicated prediction heads.
Tracker | GOT-10K (AO) | LaSOT (AUC) | TrackingNet (AUC) | TNL2K(AUC) |
---|---|---|---|---|
SuperSBT-Base | 74.4 | 70.0 | 84.0 | 56.6 |
SuperSBT-Small | 71.6 | 67.5 | 82.7 | 55.7 |
SuperSBT-Light | 69.4 | 65.8 | 81.4 | 53.6 |
Option1: Use the Anaconda (CUDA 10.2)
conda create -n supersbt python=3.8
conda activate supersbt
bash install.sh
Option2: Use the Anaconda (CUDA 11.3)
conda env create -f supersbt_cuda113_env.yaml
Option3: Use the docker file
We provide the full docker file here.
Run the following command to set paths for this project
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
After running this command, you can also modify paths by editing these two files
lib/train/admin/local.py # paths about training
lib/test/evaluation/local.py # paths about testing
Put the tracking datasets in ./data. It should look like:
${PROJECT_ROOT}
-- data
-- lasot
|-- airplane
|-- basketball
|-- bear
...
-- got10k
|-- test
|-- train
|-- val
-- coco
|-- annotations
|-- images
-- trackingnet
|-- TRAIN_0
|-- TRAIN_1
...
|-- TRAIN_11
|-- TEST
Download pre-trained MAE weight and put it under $PROJECT_ROOT$/pretrained_models
python tracking/train.py --script supersbt --config supersbt_base --save_dir ./output --mode multiple --nproc_per_node 4 --use_wandb 0
python -m torch.distributed.launch --nproc_per_node 8 lib/train/run_training.py --script supersbt --config supersbt_base --save_dir .
Replace --config
with the desired model config under experiments/supersbt
. We use wandb to record detailed training logs, in case you don't want to use wandb, set --use_wandb 0
.
Download the model weights mentioned above
Put the downloaded weights on $PROJECT_ROOT$/output/checkpoints/train/supersbt
Change the corresponding values of lib/test/evaluation/local.py
to the actual benchmark saving paths
Some testing examples:
- LaSOT or other off-line evaluated benchmarks (modify
--dataset
correspondingly)
python tracking/test.py supersbt supersbt_base --dataset lasot --threads 16 --num_gpus 4
python tracking/analysis_results.py # need to modify tracker configs and names
- GOT10K-test
python tracking/test.py supersbt supersbt_base_got --dataset got10k_test --threads 16 --num_gpus 4
python lib/test/utils/transform_got10k.py --tracker_name supersbt --cfg_name supersbt_base_got
- TrackingNet
python tracking/test.py supersbt supersbt_base --dataset trackingnet --threads 16 --num_gpus 4
python lib/test/utils/transform_trackingnet.py --tracker_name supersbt --cfg_name supersbt_base
Note: The speeds reported in our paper were tested on a single RTX2080Ti GPU.
# Profiling supersbt_base
python tracking/profile_model.py --script supersbt --config supersbt_base
# Profiling vitb_384_mae_ce_32x4_ep300
python tracking/profile_model.py --script supersbt --config supersbt_base
- Thanks for the STARK, OStrack, and PyTracking library, which helps us to quickly implement our ideas.
- We use the implementation of the HiViT.
If our work is useful for your research, please consider citing:
@article{xie_2024_SuperSBT,
title={Correlation-Embedded Transformer Tracking: A Single-Branch Framework},
author={Xie, Fei and Yang, Wankou and Wang, Chunyu and Chu, Lei and Cao, Yue and Ma, Chao and Zeng, Wenjun},
journal={arXiv preprint arXiv:2401.12743},
year={2024}
}
@InProceedings{xie_2022_SBT,
author = {Xie, Fei and Wang, Chunyu and Wang, Guangting and Cao, Yue and Yang, Wankou and Zeng, Wenjun},
title = {Correlation-Aware Deep Tracking},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
}