AI Basketball Games Video Editor is a command-line program to get basketball highlight video by PyTorch YOLOv4 object detection. Analyze basketball and basketball hoop locations collected from object detection. It can get shot frame index and cut video frame to merge highlight video.
├── README.md
├── video_editor.py demo to get basketball highlight video
├── pytorch_YOLOv4 pytorch-YOLOv4 source code
│ ├── weights need to download weights
│ └── ...
├── tool
│ ├── utils_basketball.py detect basketball shots algorithm
│ └── utils.py
├── dataset
│ └── your_video_name.mp4
├── result
│ ├── obj_log_name.data save frame information and object detect result
│ └── your_output_video_name.mp4
git clone https://github.com/Varun-SV/Automated-Basketball-Scoreboard.git
python 3.6
numpy
pandas
tqdm
cv2
pytorch
mmpose
Please refer to the official documentation for installing pytorch https://pytorch.org/get-started/locally/
More details for different cuda version https://pytorch.org/get-started/previous-versions/
Example:
conda install pytorch==1.3.0 torchvision==0.4.1 cudatoolkit=10.0 -c pytorch
Optional (For tensorrt yolov4 object detector engine):
tensorrt 7.0.0
Please refer to the official documentation for installing tensorrt with different cuda version
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
Example: (For Debian 10 cuda 10.0)
- mkdir tensorrt
- From https://developer.nvidia.com/tensorrt, to download
TensorRT-7.0.0.11.Ubuntu-18.04.x86_64-gnu.cuda-10.0.cudnn7.6.tar.gz
(select TensorRT 7.0) in the directorytensorrt/
- tar xzvf
TensorRT-7.0.0.11.Ubuntu-18.04.x86_64-gnu.cuda-10.0.cudnn7.6.tar.gz
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/<path_your_tensorrt>/TensorRT-7.0.0.11/lib
- cd TensorRT-7.0.0.11/python/
- pip install
tensorrt-7.0.0.11-cp36-none-linux_x86_64.whl
- pip install mmpose
- pip install pycuda
All the necessary weights are already present in the folder pytorch_Yolov4
- download your basketball video in the directory
input/video/
python video_editor.py --video_path VIDEO_PATH --output_path OUTPUT_PATH --output_video_name OUTPUT_VIDEO_NAME [OPTIONS]
# example
python video_editor.py --video_path input/video/input_video.mp4 --output_path output/video --output_video_name out_demo.mp4
-
It will generate
your_output_video_name.mp4 obj_log_name.data
in the directoryresult/
-
If you had finished extracting features. You can use
--read_flag 1
to read log for different output video mode. -
If you use pytorch yolov4 object detector engine
--inference_detector pytorch
.
For image input size, you can select any inference_size = (height, width) in
height = 320 + 96 * n, n in {0, 1, 2, 3, ...}
width = 320 + 96 * m, m in {0, 1, 2, 3, ...}
Exmaple--inference_size (1184, 1184)
or--inference_size (704, 704)
Default inference_size is (1184, 1184) -
If you use tensorrt yolov4 object detector engine
--inference_detector tensorrt
.
For image input size, you only can select--inference_size (1184, 1184)
.
Tensorrt engine 3x faster than pytorch engine fps. -
You can use
--output_mode shot
to select different output video mode.output video mode full show person basketball basketball_hoop frame_information basketball show basketball basketball_hoop frame_information shot show basketball shot frame_information standard show frame_information clean only cutting video
-
You can refer the command-line options.
optional arguments: -h, --help show this help message and exit --video_path VIDEO_PATH input video path (default: None) --output_path OUTPUT_PATH output folder path (default: None) --output_video_name OUTPUT_VIDEO_NAME output video name (default: None) --highlight_flag HIGHLIGHT_FLAG select 1 with auto-generated highlight or 0 without auto-generated highlight (default: 1) --output_mode OUTPUT_MODE output video mode full show person basketball basketball_hoop frame_information basketball show basketball basketball_hoop frame_information shot show basketball shot frame_information standard show frame_information clean only cutting video (default: shot) --process_frame_init PROCESS_FRAME_INIT start processing frame (default: 0) --process_frame_final PROCESS_FRAME_FINAL end processing frame. If process_frame_final < 0, use video final frame (default: -1) --obj_log_name OBJ_LOG_NAME save frame information and obj detect result (default: obj_log_name.data) --save_step SAVE_STEP save obj log for each frame step (default: 2000) --weight_path WEIGHT_PATH Yolov4 weight path (default: pytorch_YOLOv4/weights/yolov4-basketball.weights) --cfg_path CFG_PATH Yolov4 cfg path (default: pytorch_YOLOv4/cfg/yolov4-basketball.cfg) --num_classes NUM_CLASSES num classes = 3 (person/basketball/basketball_hoop) (default: 3) --namesfile_path NAMESFILE_PATH Yolov4 class names path (default: pytorch_YOLOv4/data/basketball_obj.names) --inference_detector INFERENCE_DETECTOR object detector engine. You can select pytorch or tensorrt (default: pytorch) --inference_size INFERENCE_SIZE Image input size for inference If you use pytorch yolov4 object detector engine height = 320 + 96 * n, n in {0, 1, 2, 3, ...} width = 320 + 96 * m, m in {0, 1, 2, 3, ...} inference_size= (height, width) If you use tensorrt yolov4 object detector engine Image input size for inference only with inference_size = (1184, 1184) (default: (1184, 1184)) --read_flag READ_FLAG read log mode flag If you had finished extracting features. You can use select 1 to read log for different output video mode. (default: 0) --cut_frame CUT_FRAME cut frame range around shot frame index for highlight video (default: 50)
Reference:
-
Paper Yolo v4: https://arxiv.org/abs/2004.10934
-
Source code Yolo v4:https://github.com/AlexeyAB/darknet
-
More details: http://pjreddie.com/darknet/yolo/
Contact:
Issues should be raised directly in the repository.
If you are very interested in this project, please feel free to contact me ([email protected])