Skip to content

Commit

Permalink
Refactor scripts
Browse files Browse the repository at this point in the history
  • Loading branch information
VikParuchuri committed Jan 16, 2025
1 parent b96cae9 commit 766b6a5
Show file tree
Hide file tree
Showing 15 changed files with 525 additions and 521 deletions.
45 changes: 2 additions & 43 deletions detect_layout.py
Original file line number Diff line number Diff line change
@@ -1,45 +1,4 @@
import time
import click
import copy
import json
from collections import defaultdict

from surya.layout import LayoutPredictor
from surya.debug.draw import draw_polys_on_image
from surya.common.cli.config import CLILoader
import os

@click.command(help="Detect layout of an input file or folder (PDFs or image).")
@CLILoader.common_options
def main(input_path: str, **kwargs):
loader = CLILoader(input_path, kwargs)

layout_predictor = LayoutPredictor()

start = time.time()
layout_predictions = layout_predictor(loader.images)

if loader.debug:
print(f"Layout took {time.time() - start} seconds")

if loader.images:
for idx, (image, layout_pred, name) in enumerate(zip(loader.images, layout_predictions, loader.names)):
polygons = [p.polygon for p in layout_pred.bboxes]
labels = [f"{p.label}-{p.position}" for p in layout_pred.bboxes]
bbox_image = draw_polys_on_image(polygons, copy.deepcopy(image), labels=labels)
bbox_image.save(os.path.join(loader.result_path, f"{name}_{idx}_layout.png"))

predictions_by_page = defaultdict(list)
for idx, (pred, name, image) in enumerate(zip(layout_predictions, loader.names, loader.images)):
out_pred = pred.model_dump()
out_pred["page"] = len(predictions_by_page[name]) + 1
predictions_by_page[name].append(out_pred)

with open(os.path.join(loader.result_path, "results.json"), "w+", encoding="utf-8") as f:
json.dump(predictions_by_page, f, ensure_ascii=False)

print(f"Wrote results to {loader.result_path}")

from surya.scripts import detect_layout_cli

if __name__ == "__main__":
main()
detect_layout_cli()
48 changes: 2 additions & 46 deletions detect_text.py
Original file line number Diff line number Diff line change
@@ -1,51 +1,7 @@
import click
import copy
import json
import time
from collections import defaultdict

from surya.detection import DetectionPredictor
from surya.debug.draw import draw_polys_on_image
from surya.common.cli.config import CLILoader
import os

@click.command(help="Detect bboxes in an input file or folder (PDFs or image).")
@CLILoader.common_options
def main(input_path: str, **kwargs):
loader = CLILoader(input_path, kwargs)

det_predictor = DetectionPredictor()

start = time.time()
predictions = det_predictor(loader.images, include_maps=loader.debug)
end = time.time()
if loader.debug:
print(f"Detection took {end - start} seconds")

if loader.images:
for idx, (image, pred, name) in enumerate(zip(loader.images, predictions, loader.names)):
polygons = [p.polygon for p in pred.bboxes]
bbox_image = draw_polys_on_image(polygons, copy.deepcopy(image))
bbox_image.save(os.path.join(loader.result_path, f"{name}_{idx}_bbox.png"))

if loader.debug:
heatmap = pred.heatmap
heatmap.save(os.path.join(loader.result_path, f"{name}_{idx}_heat.png"))

predictions_by_page = defaultdict(list)
for idx, (pred, name, image) in enumerate(zip(predictions, loader.names, loader.images)):
out_pred = pred.model_dump(exclude=["heatmap", "affinity_map"])
out_pred["page"] = len(predictions_by_page[name]) + 1
predictions_by_page[name].append(out_pred)

with open(os.path.join(loader.result_path, "results.json"), "w+", encoding="utf-8") as f:
json.dump(predictions_by_page, f, ensure_ascii=False)

print(f"Wrote results to {loader.result_path}")

from surya.scripts import detect_text_cli

if __name__ == "__main__":
main()
detect_text_cli()



Expand Down
247 changes: 3 additions & 244 deletions ocr_app.py
Original file line number Diff line number Diff line change
@@ -1,245 +1,4 @@
import io
import tempfile
from typing import List
from surya.scripts import streamlit_app_cli

import pypdfium2
import streamlit as st

from surya.models import load_predictors

from surya.debug.draw import draw_polys_on_image, draw_bboxes_on_image

from surya.debug.text import draw_text_on_image
from PIL import Image
from surya.recognition.languages import CODE_TO_LANGUAGE, replace_lang_with_code
from surya.table_rec import TableResult
from surya.detection import TextDetectionResult
from surya.recognition import OCRResult
from surya.layout import LayoutResult
from surya.settings import settings
from surya.common.util import rescale_bbox, expand_bbox
from pdftext.extraction import plain_text_output


@st.cache_resource()
def load_predictors_cached():
return load_predictors()


def run_ocr_errors(pdf_file, page_count, sample_len=512, max_samples=10, max_pages=15):
with tempfile.NamedTemporaryFile(suffix=".pdf") as f:
f.write(pdf_file.getvalue())
f.seek(0)

# Sample the text from the middle of the PDF
page_middle = page_count // 2
page_range = range(max(page_middle - max_pages, 0), min(page_middle + max_pages, page_count))
text = plain_text_output(f.name, page_range=page_range)

sample_gap = len(text) // max_samples
if len(text) == 0 or sample_gap == 0:
return "This PDF has no text or very little text", ["no text"]

if sample_gap < sample_len:
sample_gap = sample_len

# Split the text into samples for the model
samples = []
for i in range(0, len(text), sample_gap):
samples.append(text[i:i + sample_len])

results = predictors["ocr_error"](samples)
label = "This PDF has good text."
if results.labels.count("bad") / len(results.labels) > .2:
label = "This PDF may have garbled or bad OCR text."
return label, results.labels


def text_detection(img) -> (Image.Image, TextDetectionResult):
pred = predictors["detection"]([img])[0]
polygons = [p.polygon for p in pred.bboxes]
det_img = draw_polys_on_image(polygons, img.copy())
return det_img, pred


def layout_detection(img) -> (Image.Image, LayoutResult):
pred = predictors["layout"]([img])[0]
polygons = [p.polygon for p in pred.bboxes]
labels = [f"{p.label}-{p.position}" for p in pred.bboxes]
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels, label_font_size=18)
return layout_img, pred


def table_recognition(img, highres_img, skip_table_detection: bool) -> (Image.Image, List[TableResult]):
if skip_table_detection:
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])]
table_imgs = [highres_img]
else:
_, layout_pred = layout_detection(img)
layout_tables_lowres = [l.bbox for l in layout_pred.bboxes if l.label == "Table"]
table_imgs = []
layout_tables = []
for tb in layout_tables_lowres:
highres_bbox = rescale_bbox(tb, img.size, highres_img.size)
# Slightly expand the box
highres_bbox = expand_bbox(highres_bbox, expansion_factor=.01)
table_imgs.append(
highres_img.crop(highres_bbox)
)
layout_tables.append(highres_bbox)

table_preds = predictors["table_rec"](table_imgs)
table_img = img.copy()

for results, table_bbox in zip(table_preds, layout_tables):
adjusted_bboxes = []
labels = []
colors = []

for item in results.cells:
adjusted_bboxes.append([
(item.bbox[0] + table_bbox[0]),
(item.bbox[1] + table_bbox[1]),
(item.bbox[2] + table_bbox[0]),
(item.bbox[3] + table_bbox[1])
])
labels.append(item.label)
if "Row" in item.label:
colors.append("blue")
else:
colors.append("red")
table_img = draw_bboxes_on_image(adjusted_bboxes, highres_img, labels=labels, label_font_size=18, color=colors)
return table_img, table_preds


# Function for OCR
def ocr(img, highres_img, langs: List[str]) -> (Image.Image, OCRResult):
replace_lang_with_code(langs)
img_pred = predictors["recognition"]([img], [langs], predictors["detection"], highres_images=[highres_img])[0]

bboxes = [l.bbox for l in img_pred.text_lines]
text = [l.text for l in img_pred.text_lines]
rec_img = draw_text_on_image(bboxes, text, img.size, langs)
return rec_img, img_pred


def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)


@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=settings.IMAGE_DPI):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
doc.close()
return png_image


@st.cache_data()
def page_counter(pdf_file):
doc = open_pdf(pdf_file)
doc_len = len(doc)
doc.close()
return doc_len


st.set_page_config(layout="wide")
col1, col2 = st.columns([.5, .5])

predictors = load_predictors_cached()

st.markdown("""
# Surya OCR Demo
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages.
Notes:
- This works best on documents with printed text.
- Preprocessing the image (e.g. increasing contrast) can improve results.
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease).
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list.
Find the project [here](https://github.com/VikParuchuri/surya).
""")

in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=[], max_selections=4, help="Select the languages in the image (if known) to improve OCR accuracy. Optional.")

if in_file is None:
st.stop()

filetype = in_file.type
whole_image = False
page_count = None
if "pdf" in filetype:
page_count = page_counter(in_file)
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)

pil_image = get_page_image(in_file, page_number, settings.IMAGE_DPI)
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES)
else:
pil_image = Image.open(in_file).convert("RGB")
pil_image_highres = pil_image
page_number = None

text_det = st.sidebar.button("Run Text Detection")
text_rec = st.sidebar.button("Run OCR")
layout_det = st.sidebar.button("Run Layout Analysis")
table_rec = st.sidebar.button("Run Table Rec")
ocr_errors = st.sidebar.button("Run bad PDF text detection")
use_pdf_boxes = st.sidebar.checkbox("PDF table boxes", value=True, help="Table recognition only: Use the bounding boxes from the PDF file vs text detection model.")
skip_table_detection = st.sidebar.checkbox("Skip table detection", value=False, help="Table recognition only: Skip table detection and treat the whole image/page as a table.")

if pil_image is None:
st.stop()

# Run Text Detection
if text_det:
det_img, pred = text_detection(pil_image)
with col1:
st.image(det_img, caption="Detected Text", use_container_width=True)
st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True)


# Run layout
if layout_det:
layout_img, pred = layout_detection(pil_image)
with col1:
st.image(layout_img, caption="Detected Layout", use_container_width=True)
st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True)

# Run OCR
if text_rec:
rec_img, pred = ocr(pil_image, pil_image_highres, languages)
with col1:
st.image(rec_img, caption="OCR Result", use_container_width=True)
json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"])
with json_tab:
st.json(pred.model_dump(), expanded=True)
with text_tab:
st.text("\n".join([p.text for p in pred.text_lines]))


if table_rec:
table_img, pred = table_recognition(pil_image, pil_image_highres, skip_table_detection)
with col1:
st.image(table_img, caption="Table Recognition", use_container_width=True)
st.json([p.model_dump() for p in pred], expanded=True)

if ocr_errors:
if "pdf" not in filetype:
st.error("This feature only works with PDFs.")
label, results = run_ocr_errors(in_file, page_count)
with col1:
st.write(label)
st.json(results)

with col2:
st.image(pil_image, caption="Uploaded Image", use_container_width=True)
if __name__ == "__main__":
streamlit_app_cli()
Loading

0 comments on commit 766b6a5

Please sign in to comment.