-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathefficientnet_utils.py
404 lines (343 loc) · 13.5 KB
/
efficientnet_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# This Code is taken from https://github.com/lukemelas/EfficientNet-PyTorch
"""
This file contains helper functions for building the model and for loading model parameters.
These helper functions are built to mirror those in the official TensorFlow implementation.
"""
import re
import math
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo
########################################################################
############### HELPERS FUNCTIONS FOR MODEL ARCHITECTURE ###############
########################################################################
# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple(
"GlobalParams",
[
"batch_norm_momentum",
"batch_norm_epsilon",
"dropout_rate",
"num_classes",
"width_coefficient",
"depth_coefficient",
"depth_divisor",
"min_depth",
"drop_connect_rate",
"image_size",
],
)
# Parameters for an individual model block
BlockArgs = collections.namedtuple(
"BlockArgs",
[
"kernel_size",
"num_repeat",
"input_filters",
"output_filters",
"expand_ratio",
"id_skip",
"stride",
"se_ratio",
],
)
# Change namedtuple defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
def relu_fn(x):
"""Swish activation function"""
return x * torch.sigmoid(x)
def round_filters(filters, global_params):
"""Calculate and round number of filters based on depth multiplier."""
multiplier = global_params.width_coefficient
if not multiplier:
return filters
divisor = global_params.depth_divisor
min_depth = global_params.min_depth
filters *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, global_params):
"""Round number of filters based on depth multiplier."""
multiplier = global_params.depth_coefficient
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def drop_connect(inputs, p, training):
"""Drop connect."""
if not training:
return inputs
batch_size = inputs.shape[0]
keep_prob = 1 - p
random_tensor = keep_prob
random_tensor += torch.rand(
[batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device
)
binary_tensor = torch.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def get_same_padding_conv2d(image_size=None):
"""Chooses static padding if you have specified an image size, and dynamic padding otherwise.
Static padding is necessary for ONNX exporting of models."""
if image_size is None:
return Conv2dDynamicSamePadding
return partial(Conv2dStaticSamePadding, image_size=image_size)
class Conv2dDynamicSamePadding(nn.Conv2d):
"""2D Convolutions like TensorFlow, for a dynamic image size"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
):
super().__init__(
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias
)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
def forward(self, x):
ih, iw = x.size()[-2:]
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
x = F.pad(
x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
)
return F.conv2d(
x,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
class Conv2dStaticSamePadding(nn.Conv2d):
"""2D Convolutions like TensorFlow, for a fixed image size"""
def __init__(
self, in_channels, out_channels, kernel_size, image_size=None, **kwargs
):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
# Calculate padding based on image size and save it
if image_size is None:
raise AssertionError
ih, iw = image_size if type(image_size) == list else [image_size, image_size]
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
self.static_padding = nn.ZeroPad2d(
(pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)
)
else:
self.static_padding = Identity()
def forward(self, x):
x = self.static_padding(x)
x = F.conv2d(
x,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
return x
"""
class Identity(nn.Module):
def forward(input):
return input
"""
class Identity(nn.Module):
"""[summary]"""
def __init__(
self,
):
"""[summary]"""
super(Identity, self).__init__()
@staticmethod
def forward(input):
"""[summary]"""
return input
########################################################################
############## HELPERS FUNCTIONS FOR LOADING MODEL PARAMS ##############
########################################################################
def efficientnet_params(model_name):
"""Map EfficientNet model name to parameter coefficients."""
params_dict = {
# Coefficients: width,depth,res,dropout
"efficientnet-b0": (1.0, 1.0, 224, 0.2),
"efficientnet-b1": (1.0, 1.1, 240, 0.2),
"efficientnet-b2": (1.1, 1.2, 260, 0.3),
"efficientnet-b3": (1.2, 1.4, 300, 0.3),
"efficientnet-b4": (1.4, 1.8, 380, 0.4),
"efficientnet-b5": (1.6, 2.2, 456, 0.4),
"efficientnet-b6": (1.8, 2.6, 528, 0.5),
"efficientnet-b7": (2.0, 3.1, 600, 0.5),
}
return params_dict[model_name]
class BlockDecoder:
"""Block Decoder for readability, straight from the official TensorFlow repository"""
@staticmethod
def _decode_block_string(block_string):
"""Gets a block through a string notation of arguments."""
if not isinstance(block_string, str):
raise AssertionError
ops = block_string.split("_")
options = {}
for op in ops:
splits = re.split(r"(\d.*)", op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
# Check stride
if not (
("s" in options and len(options["s"]) == 1)
or (len(options["s"]) == 2 and options["s"][0] == options["s"][1])
):
raise AssertionError
return BlockArgs(
kernel_size=int(options["k"]),
num_repeat=int(options["r"]),
input_filters=int(options["i"]),
output_filters=int(options["o"]),
expand_ratio=int(options["e"]),
id_skip=("noskip" not in block_string),
se_ratio=float(options["se"]) if "se" in options else None,
stride=[int(options["s"][0])],
)
@staticmethod
def _encode_block_string(block):
"""Encodes a block to a string."""
args = [
"r%d" % block.num_repeat,
"k%d" % block.kernel_size,
"s%d%d" % (block.strides[0], block.strides[1]),
"e%s" % block.expand_ratio,
"i%d" % block.input_filters,
"o%d" % block.output_filters,
]
if 0 < block.se_ratio <= 1:
args.append("se%s" % block.se_ratio)
if block.id_skip is False:
args.append("noskip")
return "_".join(args)
@staticmethod
def decode(string_list):
"""
Decodes a list of string notations to specify blocks inside the network.
:param string_list: a list of strings, each string is a notation of block
:return: a list of BlockArgs namedtuples of block args
"""
if not isinstance(string_list, list):
raise AssertionError
blocks_args = []
for block_string in string_list:
blocks_args.append(BlockDecoder._decode_block_string(block_string))
return blocks_args
@staticmethod
def encode(blocks_args):
"""
Encodes a list of BlockArgs to a list of strings.
:param blocks_args: a list of BlockArgs namedtuples of block args
:return: a list of strings, each string is a notation of block
"""
block_strings = []
for block in blocks_args:
block_strings.append(BlockDecoder._encode_block_string(block))
return block_strings
def efficientnet(
width_coefficient=None,
depth_coefficient=None,
dropout_rate=0.2,
drop_connect_rate=0.2,
image_size=None,
num_classes=1000,
):
"""Creates a efficientnet model."""
blocks_args = [
"r1_k3_s11_e1_i32_o16_se0.25",
"r2_k3_s22_e6_i16_o24_se0.25",
"r2_k5_s22_e6_i24_o40_se0.25",
"r3_k3_s22_e6_i40_o80_se0.25",
"r3_k5_s11_e6_i80_o112_se0.25",
"r4_k5_s22_e6_i112_o192_se0.25",
"r1_k3_s11_e6_i192_o320_se0.25",
]
blocks_args = BlockDecoder.decode(blocks_args)
global_params = GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=dropout_rate,
drop_connect_rate=drop_connect_rate,
# data_format='channels_last', # removed, this is always true in PyTorch
num_classes=num_classes,
width_coefficient=width_coefficient,
depth_coefficient=depth_coefficient,
depth_divisor=8,
min_depth=None,
image_size=image_size,
)
return blocks_args, global_params
def get_model_params(model_name, override_params):
"""Get the block args and global params for a given model"""
if model_name.startswith("efficientnet"):
w, d, s, p = efficientnet_params(model_name)
# note: all models have drop connect rate = 0.2
blocks_args, global_params = efficientnet(
width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s
)
else:
raise NotImplementedError("model name is not pre-defined: %s" % model_name)
if override_params:
# ValueError will be raised here if override_params has fields not included in global_params.
global_params = global_params._replace(**override_params)
return blocks_args, global_params
"""
# old checkpoint urls
url_map = {
'efficientnet-b0': 'http://storage.googleapis.com/public-models/efficientnet-b0-08094119.pth',
'efficientnet-b1': 'http://storage.googleapis.com/public-models/efficientnet-b1-dbc7070a.pth',
'efficientnet-b2': 'http://storage.googleapis.com/public-models/efficientnet-b2-27687264.pth',
'efficientnet-b3': 'http://storage.googleapis.com/public-models/efficientnet-b3-c8376fa2.pth',
'efficientnet-b4': 'http://storage.googleapis.com/public-models/efficientnet-b4-e116e8b3.pth',
'efficientnet-b5': 'http://storage.googleapis.com/public-models/efficientnet-b5-586e6cc6.pth',
}
"""
url_map = {
"efficientnet-b0": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth",
"efficientnet-b1": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth",
"efficientnet-b2": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth",
"efficientnet-b3": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth",
"efficientnet-b4": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth",
"efficientnet-b5": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth",
"efficientnet-b6": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth",
"efficientnet-b7": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth",
}
def load_pretrained_weights(model, model_name, load_fc=True):
"""Loads pretrained weights, and downloads if loading for the first time."""
state_dict = model_zoo.load_url(url_map[model_name])
if load_fc:
model.load_state_dict(state_dict)
else:
state_dict.pop("_fc.weight")
state_dict.pop("_fc.bias")
res = model.load_state_dict(state_dict, strict=False)
if str(res.missing_keys) != str(["_fc.weight", "_fc.bias"]):
raise AssertionError("issue loading pretrained weights")
print("Loaded pretrained weights for {}".format(model_name))