-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlosses.py
166 lines (119 loc) · 5.66 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
def calc_iou(a, b):
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
iw = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 2]) - torch.max(
torch.unsqueeze(a[:, 0], 1), b[:, 0]
)
ih = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 3]) - torch.max(
torch.unsqueeze(a[:, 1], 1), b[:, 1]
)
iw = torch.clamp(iw, min=0)
ih = torch.clamp(ih, min=0)
ua = (
torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1)
+ area
- iw * ih
)
ua = torch.clamp(ua, min=1e-8)
intersection = iw * ih
IoU = intersection / ua
return IoU
class FocalLoss(nn.Module):
"""focal loss"""
# def __init__(self):
@staticmethod
def forward(classifications, regressions, anchors, annotations):
alpha = 0.25
gamma = 2.0
batch_size = classifications.shape[0]
classification_losses = []
regression_losses = []
anchor = anchors[0, :, :]
anchor_widths = anchor[:, 2] - anchor[:, 0]
anchor_heights = anchor[:, 3] - anchor[:, 1]
anchor_ctr_x = anchor[:, 0] + 0.5 * anchor_widths
anchor_ctr_y = anchor[:, 1] + 0.5 * anchor_heights
device = classifications.device
for j in range(batch_size):
classification = classifications[j, :, :]
regression = regressions[j, :, :]
bbox_annotation = annotations[j, :, :]
bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]
if bbox_annotation.shape[0] == 0:
regression_losses.append(torch.tensor(0).float().to(device))
classification_losses.append(torch.tensor(0).float().to(device))
continue
classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4)
IoU = calc_iou(
anchors[0, :, :], bbox_annotation[:, :4]
) # num_anchors x num_annotations
IoU_max, IoU_argmax = torch.max(IoU, dim=1) # num_anchors x 1
# compute the loss for classification
targets = torch.ones(classification.shape) * -1
targets = targets.to(device)
targets[torch.lt(IoU_max, 0.4), :] = 0
positive_indices = torch.ge(IoU_max, 0.5)
num_positive_anchors = positive_indices.sum()
assigned_annotations = bbox_annotation[IoU_argmax, :]
targets[positive_indices, :] = 0
targets[
positive_indices, assigned_annotations[positive_indices, 4].long()
] = 1
alpha_factor = torch.ones(targets.shape).to(device) * alpha
alpha_factor = torch.where(
torch.eq(targets, 1.0), alpha_factor, 1.0 - alpha_factor
)
focal_weight = torch.where(
torch.eq(targets, 1.0), 1.0 - classification, classification
)
focal_weight = alpha_factor * torch.pow(focal_weight, gamma)
bce = -(
targets * torch.log(classification)
+ (1.0 - targets) * torch.log(1.0 - classification)
)
# cls_loss = focal_weight * torch.pow(bce, gamma)
cls_loss = focal_weight * bce
cls_loss = torch.where(
torch.ne(targets, -1.0),
cls_loss,
torch.zeros(cls_loss.shape).to(device),
)
classification_losses.append(
cls_loss.sum() / torch.clamp(num_positive_anchors.float(), min=1.0)
)
# compute the loss for regression
if positive_indices.sum() > 0:
assigned_annotations = assigned_annotations[positive_indices, :]
anchor_widths_pi = anchor_widths[positive_indices]
anchor_heights_pi = anchor_heights[positive_indices]
anchor_ctr_x_pi = anchor_ctr_x[positive_indices]
anchor_ctr_y_pi = anchor_ctr_y[positive_indices]
gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0]
gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1]
gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths
gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights
# clip widths to 1
gt_widths = torch.clamp(gt_widths, min=1)
gt_heights = torch.clamp(gt_heights, min=1)
targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi
targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi
targets_dw = torch.log(gt_widths / anchor_widths_pi)
targets_dh = torch.log(gt_heights / anchor_heights_pi)
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh))
targets = targets.t()
targets = targets / torch.Tensor([[0.1, 0.1, 0.2, 0.2]]).to(device)
# negative_indices = ~(positive_indices)
# negative_indices = 1 - positive_indices # For older Pytorch versions
regression_diff = torch.abs(targets - regression[positive_indices, :])
regression_loss = torch.where(
torch.le(regression_diff, 1.0 / 9.0),
0.5 * 9.0 * torch.pow(regression_diff, 2),
regression_diff - 0.5 / 9.0,
)
regression_losses.append(regression_loss.mean())
else:
regression_losses.append(torch.tensor(0).float().to(device))
return torch.stack(classification_losses).mean(
dim=0, keepdim=True
), torch.stack(regression_losses).mean(dim=0, keepdim=True)