In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Google Gemma models on Intel GPUs. For illustration purposes, we utilize the google/gemma-7b-it and google/gemma-2b-it as reference Gemma models.
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Important: According to Gemma's requirement, please make sure you have installed transformers==4.38.1
to run the example.
In the example generate.py, we show a basic use case for a Gemma model to predict the next N tokens using generate()
API, with IPEX-LLM INT4 optimizations on Intel GPUs.
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to here.
After installing conda, create a Python environment for IPEX-LLM:
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
We suggest using conda to manage environment:
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
source /opt/intel/oneapi/setvars.sh
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
Note: Please make sure you are using CMD (Anaconda Prompt if using conda) to run the command as PowerShell is not supported.
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.so
can be installed byconda install -c conda-forge -y gperftools=2.10
.
For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A300-Series or Pro A60
set SYCL_CACHE_PERSISTENT=1
For other Intel dGPU Series
There is no need to set further environment variables.
Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
python ./generate.py --prompt 'What is AI?'
In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the Gemma model (e.g.google/gemma-7b-it
andgoogle/gemma-2b-it
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'google/gemma-7b-it'
.--prompt PROMPT
: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'What is AI?'
.--n-predict N_PREDICT
: argument defining the max number of tokens to predict. It is default to be32
.
Inference time: xxxx s
-------------------- Output --------------------
user
What is AI?
model
**Artificial Intelligence (AI)** is a field of computer science that involves the creation of intelligent machines capable of performing tasks typically requiring human intelligence, such as learning,
Inference time: xxxx s
-------------------- Output --------------------
user
What is AI?
model
**Artificial intelligence (AI)** is the simulation of human cognitive functions, such as learning, reasoning, and problem-solving, by machines. AI systems are designed