forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alpaca_lora_finetuning.py
269 lines (241 loc) · 10.1 KB
/
alpaca_lora_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import List
import fire
import torch
import transformers
from datasets import load_dataset
import accelerate
from transformers import AutoTokenizer
from peft import (
get_peft_model_state_dict,
set_peft_model_state_dict,
)
current_dir = os.path.dirname(os.path.realpath(__file__))
common_util_path = os.path.join(current_dir, '..')
import sys
sys.path.append(common_util_path)
from common.utils import Prompter, get_int_from_env, wandb_check, get_train_val_data
from transformers import BitsAndBytesConfig
from ipex_llm.transformers import AutoModelForCausalLM
# import them from ipex_llm.transformers.qlora to get a BigDL-LLM compatible Peft model
from ipex_llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training,\
LoraConfig
from ipex_llm.utils.common import invalidInputError
local_rank = get_int_from_env(["LOCAL_RANK","MPI_LOCALRANKID"], "0")
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
port = get_int_from_env(["MASTER_PORT"], 29500)
os.environ["LOCAL_RANK"] = str(local_rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["RANK"] = str(local_rank)
os.environ["MASTER_PORT"] = str(port)
def train(
# model/data params
base_model: str = "meta-llama/Llama-2-7b-hf", # the only required argument, default to be "meta-llama/Llama-2-7b-hf"
saved_low_bit_model: str = None, # optional, the path to the saved model with bigdl-llm low-bit optimization
data_path: str = "yahma/alpaca-cleaned",
output_dir: str = "./bigdl-qlora-alpaca",
# training hyperparams
bf16: bool = True, # default to bf16
batch_size: int = 128,
micro_batch_size: int = 2, # default to be 2, limited by GPU memory
num_epochs: int = 3,
learning_rate: float = 3e-5, # default to be 3e-5 to avoid divergence
cutoff_len: int = 256,
val_set_size: int = 2000,
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
"k_proj",
"o_proj",
"up_proj",
"down_proj",
"gate_proj"
],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
gradient_checkpointing: bool = False,
deepspeed: str = None,
training_mode: str = "lora",
):
invalidInputError(training_mode == "lora",
f"This example is for lora training mode, but got training_mode={training_mode}.")
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Training Alpaca-LoRA model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
f"training_mode: {training_mode}\n"
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = batch_size // micro_batch_size
prompter = Prompter(prompt_template_name)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = wandb_check(wandb_project, wandb_watch, wandb_log_model)
if saved_low_bit_model is not None:
# Load the low bit optimized model if provide the saved path
model = AutoModelForCausalLM.load_low_bit(
saved_low_bit_model,
optimize_model=False,
torch_dtype=torch.bfloat16,
modules_to_not_convert=["lm_head"],
trust_remote_code=True,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_low_bit="bf16",
optimize_model=False,
torch_dtype=torch.bfloat16,
modules_to_not_convert=["lm_head"],
trust_remote_code=True,
)
print(f"Model loaded on rank {os.environ.get('LOCAL_RANK')}")
model = model.to(f'xpu:{os.environ.get("LOCAL_RANK", 0)}')
print(f"Model moved to rank {os.environ.get('LOCAL_RANK')}")
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
print(f"Tokenizer loaded on rank {os.environ.get('LOCAL_RANK')}")
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference
print(model)
# Prepare a BigDL-LLM compatible Peft model
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=gradient_checkpointing)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
training_mode=training_mode,
)
print(f"Lora Config: {config}")
model = get_peft_model(model, config)
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
train_data, val_data = get_train_val_data(data, tokenizer, prompter, train_on_inputs,
add_eos_token, cutoff_len, val_set_size, seed=42)
# Unused
# if not ddp and torch.cuda.device_count() > 1:
# # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
# model.is_parallelizable = True
# model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
# warmup_ratio=0.03,
# warmup_steps=100,
max_grad_norm=0.3,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
lr_scheduler_type="cosine",
bf16=True, # ensure training more stable
logging_steps=1,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=100 if val_set_size > 0 else None,
save_steps=100,
output_dir=output_dir,
save_total_limit=100,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
gradient_checkpointing=gradient_checkpointing,
ddp_backend="ccl",
deepspeed=deepspeed,
save_safetensors=False,
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
if __name__ == "__main__":
fire.Fire(train)