Skip to content

БД2. Реляционная алгебра.

Winterpuma edited this page Jul 5, 2021 · 1 revision

Реляционная алгебра

Реляционная алгебра — замкнутая система операций над отношениями в реляционной модели данных.

Основные операции реляционной алгебры перечислены ниже. Все операции перечислить невозможно, поскольку любая операция, удовлетворяющая определению реляционной, является частью реляционной алгебры.

Переименование

R RENAME Atr1, Atr2, … AS NewAtr1, NewAtr2, …

В результате применения операции переименования получаем новое отношение, с измененными именами атрибутов.

Объединение

A UNION B

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих или A, или B, или обоим отношениям.

Пересечение

A INTERSECT B

Отношение с тем же заголовком, что и у отношений A и B, и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям A и B.

Вычитание

A MINUS B

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих отношению A и не принадлежащих отношению B.

Декартово произведение

A TIMES B

Отношение (A1, A2, …, Am, B1, B2, …, Bm), заголовок которого является сцеплением заголовков отношений A(A1, A2, …, Am) и B(B1, B2, …, Bm), а тело состоит из кортежей, являющихся сцеплением кортежей отношений A и B: (a1, a2, …, am, b1, b2, …, bm) таких, что (a1, a2, …, am)∈ A, (b1, b2, …, bm)∈ B.

Выборка (ограничение)

A WHERE d

Отношение с тем же заголовком, что и у отношения A, и телом, состоящим из кортежей, значения атрибутов которых при подстановке в условие c дают значение ИСТИНА. d представляет собой логическое выражение, в которое могут входить атрибуты отношения A и/или скалярные выражения.

Проекция

PROJECT A {x, y, …, z}

Отношение с заголовком (X, Y, …, Z) и телом, содержащим множество кортежей вида (x, y, …, z), таких, для которых в отношении A найдутся кортежи со значением атрибута X равным x, значением атрибута Y равным y, …, значением атрибута Z равным z. При выполнении проекции выделяется «вертикальная» вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.

Соединение

A JOIN c

Операция соединения есть результат последовательного применения операций декартового произведения и выборки. Если в отношениях имеются атрибуты с одинаковыми наименованиями, то перед выполнением соединения такие атрибуты необходимо переименовать.

Деление

A DIVIDEBY B

Отношение с заголовком (X1, X2, …, Xn) и телом, содержащим множество кортежей (x1, x2, …, xn), таких, что для всех кортежей (y1, y2, …, ym) ∈ B в отношении A(X1, X2, …, Xn, Y1, Y2, …, Ym) найдется кортеж (x1, x2, …, xn, y1, y2, …, ym).

Clone this wiki locally