-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeskew.py
100 lines (83 loc) · 3.19 KB
/
deskew.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#coding=utf-8
import numpy as np
import cv2
import time
from matplotlib import pyplot as plt
import math
from scipy.ndimage import filters
#
# def strokeFiter():
# pass;
def angle(x,y):
return int(math.atan2(float(y),float(x))*180.0/3.1415)
def h_rot(src, angle, scale=1.0):
w = src.shape[1]
h = src.shape[0]
rangle = np.deg2rad(angle)
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
rot_mat[0,2] += rot_move[0]
rot_mat[1,2] += rot_move[1]
return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)
pass
def v_rot(img, angel, shape, max_angel):
size_o = [shape[1],shape[0]]
size = (shape[1]+ int(shape[0]*np.cos((float(max_angel )/180) * 3.14)),shape[0])
interval = abs( int( np.sin((float(angel) /180) * 3.14)* shape[0]))
pts1 = np.float32([[0,0],[0,size_o[1]],[size_o[0],0],[size_o[0],size_o[1]]])
if(angel>0):
pts2 = np.float32([[interval,0],[0,size[1] ],[size[0],0 ],[size[0]-interval,size_o[1]]])
else:
pts2 = np.float32([[0,0],[interval,size[1] ],[size[0]-interval,0 ],[size[0],size_o[1]]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img,M,size)
return dst,M
def skew_detection(image_gray):
h, w = image_gray.shape[:2]
eigen = cv2.cornerEigenValsAndVecs(image_gray,12, 5)
angle_sur = np.zeros(180,np.uint)
eigen = eigen.reshape(h, w, 3, 2)
flow = eigen[:,:,2]
vis = image_gray.copy()
vis[:] = (192 + np.uint32(vis)) / 2
d = 12
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
for x, y in points:
vx, vy = np.int32(flow[int(y), int(x)]*d)
# cv2.line(rgb, (x-vx, y-vy), (x+vx, y+vy), (0, 355, 0), 1, cv2.LINE_AA)
ang = angle(vx,vy)
angle_sur[(ang+180)%180] +=1
# torr_bin = 30
angle_sur = angle_sur.astype(np.float)
angle_sur = (angle_sur-angle_sur.min())/(angle_sur.max()-angle_sur.min())
angle_sur = filters.gaussian_filter1d(angle_sur,5)
skew_v_val = angle_sur[20:180-20].max()
skew_v = angle_sur[30:180-30].argmax() + 30
skew_h_A = angle_sur[0:30].max()
skew_h_B = angle_sur[150:180].max()
skew_h = 0
if (skew_h_A > skew_v_val*0.3 or skew_h_B > skew_v_val*0.3):
if skew_h_A>=skew_h_B:
skew_h = angle_sur[0:20].argmax()
else:
skew_h = - angle_sur[160:180].argmax()
return skew_h,skew_v
def fastDeskew(image):
image_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
skew_h,skew_v = skew_detection(image_gray)
print("校正角度 h ",skew_h,"v",skew_v)
deskew,M = v_rot(image,int((90-skew_v)*1.5),image.shape,60)
return deskew,M
if __name__ == '__main__':
fn = './dataset/0.jpg'
img = cv2.imread(fn)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
skew_h,skew_v = skew_detection(gray)
img = v_rot(img,(90-skew_v ),img.shape,60)
# img = h_rot(img,skew_h)
# if img.shape[0]>img.shape[1]:
# img = h_rot(img, -90)
plt.show()
cv2.waitKey()