依赖库
keras
numpy
scipy
opencv-python
scikit-image
pillow
tensorflow
文件夹 hyperlpr
需要放到 Python 虚拟环境路径的 Lib
文件夹下
代码示例:
from hyperlpr import pipline as pp
import cv2
image = cv2.imread("./images_rec/2.jpg")
image,res = pp.SimpleRecognizePlate(image)
print(res)
关键函数:
def SimpleRecognizePlate(image):
t0 = time.time()
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1)
res_set = []
for j,plate in enumerate(images):
plate, rect, origin_plate =plate
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY)
plate =cv2.resize(plate,(136,36*2))
t1 = time.time()
ptype = td.SimplePredict(plate)
if ptype>0 and ptype<5:
plate = cv2.bitwise_not(plate)
image_rgb = fm.findContoursAndDrawBoundingBox(plate)
image_rgb = fv.finemappingVertical(image_rgb)
cache.verticalMappingToFolder(image_rgb)
print("e2e:", e2e.recognizeOne(image_rgb))
image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_RGB2GRAY)
# image_gray = horizontalSegmentation(image_gray)
# cv2.imshow("image_gray",image_gray)
# cv2.waitKey()
cv2.imwrite("./"+str(j)+".jpg",image_gray)
# cv2.imshow("image",image_gray)
# cv2.waitKey(0)
print("校正",time.time() - t1,"s")
# cv2.imshow("image,",image_gray)
# cv2.waitKey(0)
t2 = time.time()
val = segmentation.slidingWindowsEval(image_gray)
# print val
print("分割和识别",time.time() - t2,"s")
if len(val)==3:
blocks, res, confidence = val
if confidence/7>0.7:
image = drawRectBox(image,rect,res)
res_set.append(res)
for i,block in enumerate(blocks):
block_ = cv2.resize(block,(25,25))
block_ = cv2.cvtColor(block_,cv2.COLOR_GRAY2BGR)
image[j * 25:(j * 25) + 25, i * 25:(i * 25) + 25] = block_
if image[j*25:(j*25)+25,i*25:(i*25)+25].shape == block_.shape:
pass
if confidence>0:
print("车牌:",res,"置信度:",confidence/7)
else:
pass
# print "不确定的车牌:", res, "置信度:", confidence
print(time.time() - t0,"s")
return image,res_set