-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
213 lines (170 loc) · 6.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from torchvision.models import ResNet50_Weights
import wandb
from tqdm import tqdm
def train_model(model, criterion, optimizer, exp_lr_scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in [TRAIN, VAL]:
if phase == TRAIN:
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
total_samples = 0
# Use tqdm to track progress and display loss
data_loader = tqdm(dataloaders[phase], desc=f'{phase.capitalize()} Epoch {epoch + 1}/{num_epochs}', leave=False)
# Iterate over data
for inputs, labels in data_loader:
if torch.cuda.is_available():
inputs = inputs.cuda()
labels = labels.cuda()
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
# Track history only in training phase
with torch.set_grad_enabled(phase == TRAIN):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# Backward pass + optimize only if in training phase
if phase == TRAIN:
loss.backward()
optimizer.step()
# Statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
total_samples += inputs.size(0)
# Update tqdm description with the current loss
data_loader.set_postfix({'Loss': loss.item(), 'Acc': running_corrects.double().item() / total_samples})
# WandB logging of batch loss and accuracy
wandb.log({f"{phase}_batch_loss": loss.item(), f"{phase}_batch_accuracy": running_corrects.double() / total_samples})
if phase == TRAIN:
exp_lr_scheduler.step()
# Calculate epoch loss and accuracy
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# WandB logging
wandb.log({f"{phase}_loss": epoch_loss, f"{phase}_accuracy": epoch_acc})
# Deep copy the model if it has the best validation accuracy
if phase == VAL and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# Save best validation model
torch.save(best_model_wts, 'best_model.pt')
# Load best model weights
model.load_state_dict(best_model_wts)
return model
data_dir = 'data/'
TRAIN = 'train'
VAL = 'val'
TEST = 'test'
# VGG-16 Takes 224x224 images as input, so we resize all of them
data_transforms = {
TRAIN: transforms.Compose([
# Data augmentation is a good practice for the train set
# Here, we randomly crop the image to 224x224 and
# randomly flip it horizontally.
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]),
VAL: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
]),
TEST: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
}
image_datasets = {
x: datasets.ImageFolder(
os.path.join(data_dir, x),
transform=data_transforms[x]
)
for x in [TRAIN, VAL, TEST]
}
dataloaders = {
x: torch.utils.data.DataLoader(
image_datasets[x], batch_size=512,
shuffle=True, num_workers=20
)
for x in [TRAIN, VAL, TEST]
}
dataset_sizes = {x: len(image_datasets[x]) for x in [TRAIN, VAL, TEST]}
for x in [TRAIN, VAL, TEST]:
print("Loaded {} images under {}".format(dataset_sizes[x], x))
print("Classes: ")
class_names = image_datasets[TRAIN].classes
print(image_datasets[TRAIN].classes)
# Initialize the model
model = models.resnet50()
# We want to fine tune the last layer
# for param in model.parameters():
# param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(class_names))
if torch.cuda.is_available():
model = model.cuda()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
wandb.init(project="technion-projects",name="yaniv_romano_gender_clasiification_no_pretrain")
wandb.watch(model)
config = wandb.config # Initialize config
config.batch_size = 8 # input batch size for training (default: 64)
config.test_batch_size = 1000 # input batch size for testing (default: 1000)
config.epochs = 100 # number of epochs to train (default: 10)
config.lr = 0.01 # learning rate (default: 0.01)
config.momentum = 0.5
# Train and evaluate
model = train_model(model, criterion, optimizer, exp_lr_scheduler, num_epochs=150)
# WandB – Initialize a new run
# WandB – Config is a variable that holds and saves hyperparameters and inputs
# Save the final model
torch.save(model.state_dict(), 'final_model.pt')
# Test the model
model.eval()
test_loss = 0
correct = 0
total = 0
for inputs, labels in dataloaders[TEST]:
if torch.cuda.is_available():
inputs = inputs.cuda()
labels = labels.cuda()
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Test Accuracy: {:.2f}%'.format(accuracy))
wandb.run.summary["Test Accuracy"] = accuracy