-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
127 lines (99 loc) · 4.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torch import nn
import torch
import os
import logging
import argparse
from utils import MoirePic, weights_init
from net import MoireCNN
torch.cuda.set_device(0)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Demo for showing results')
parser.add_argument('-d', '--dataset', dest='dataset', type=str, default='/data_new/zxbsmk/moire/trainData',
help='Path of training dataset')
parser.add_argument('-b', '--batchsize', type=int, default=8,
dest='batchsize', help='Set batchsize for training')
parser.add_argument('-s', '--save', type=str, default='./model',
dest='save', help='Path for saving the best model')
par = parser.parse_args()
if not os.path.exists(par.save):
os.mkdir(par.save)
logging.basicConfig(level=logging.INFO, format='%(asctime)s : %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
def train(model, train_loader, criterion, epoch, lr, use_gpu):
model.train()
# loop = tqdm(enumerate(train_loader), total=len(train_loader), leave=False)
for batch_idx, (data, target) in enumerate(train_loader):
if use_gpu:
data, target = data.cuda(
non_blocking=True), target.cuda(non_blocking=True)
data, target = Variable(data), Variable(target)
optimizer = torch.optim.Adam(
model.parameters(), lr=lr, weight_decay=0.00001)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# loop.set_description(f'Train Epoch [{epoch}/50]')
# loop.set_postfix(loss = loss.item())
if batch_idx % 10000 == 0:
logging.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data))
# print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
# epoch, batch_idx * len(data), len(train_loader.dataset),
# 100. * batch_idx / len(train_loader), loss.data))
def val(model, val_loader, epoch, use_gpu):
model.eval()
idx, loss_sum = 0, 0.0
criterion = nn.MSELoss()
for (data, target) in val_loader:
if use_gpu:
data, target = data.cuda(
non_blocking=True), target.cuda(non_blocking=True)
data, target = Variable(data), Variable(target)
with torch.no_grad():
output = model(data)
loss = criterion(output, target)
loss_sum += loss.item()
idx += 1
loss_sum /= idx
logging.info('Val Epoch: {} \tLoss: {:.6f}'.format(
epoch, loss_sum))
return loss_sum
if __name__ == '__main__':
dataset = MoirePic(os.path.join(par.dataset, 'source'),
os.path.join(par.dataset, 'target'))
valdataset = MoirePic(os.path.join(par.dataset, 'source'),
os.path.join(par.dataset, 'target'), False)
use_gpu = torch.cuda.is_available()
train_loader = DataLoader(dataset=dataset, shuffle=True, batch_size=par.batchsize,
num_workers=14, pin_memory=True)
val_loader = DataLoader(dataset=valdataset, shuffle=True, batch_size=par.batchsize,
num_workers=14, pin_memory=True)
logging.info('loaded dataset successfully!')
logging.info(f'the number of training set images: {dataset.__len__()}')
model = MoireCNN()
model.apply(weights_init)
# model = torch.load("moire_best.pth")
if use_gpu:
model = model.cuda()
# model = nn.DataParallel(model)
logging.info('use GPU')
else:
print('use CPU')
criterion = nn.MSELoss()
lr = 0.0001
best_loss, last_loss = 100.0, 100.0
logging.info(f'learning rate: {lr}, batch size: {par.batchsize}')
for epoch in range(50):
train(model, train_loader, criterion, epoch, lr, use_gpu)
current_loss = val(model, val_loader, epoch, use_gpu)
if current_loss < best_loss:
best_loss = current_loss
torch.save(model, os.path.join(par.save, 'moire_best.pth'))
if current_loss > last_loss:
lr *= 0.9
last_loss = current_loss