Skip to content

Zhuolu-Hou/AWDesc

 
 

Repository files navigation

AWDesc (Local features detection and description)

Implementation of Attention Weighted Local Descriptors (TPAMI2023).

Unofficial Pytorch implementation of SuperPoint.

To do:

  • Evaluation code and Trained model for AWDesc
  • Training code and a more detailed readme (Coming soon)
  • Training code of SuperPoint

Requirement

pip install -r requirement.txt,

Quick start

HPatches Image Matching Benchmark

1.Download the trained model:

AWDesc_CA:

https://drive.google.com/file/d/1qrvdd3KVYFl6EwH8s5IS5p_Hs26xIKRD/view?usp=sharing

AWDesc_Tiny:

https://drive.google.com/drive/folders/1PGHiGojkE7qCp1T-l9JSn4aJ7gN0_ua6?usp=sharing

and place it in the "ckpt/mtldesc".

2.Download the HPatches dataset:

cd evaluation_hpatch/hpatches_sequences
bash download.sh

3.Extract local descriptors:

cd evaluation_hpatch
CUDA_VISIBLE_DEVICES=0 python export.py  --tag [Descriptor_suffix_name] --top-k 10000 --output_root [out_dir] --config ../configs/MTLDesc_eva.yaml

4.Evaluation

cd evaluation_hpatch/hpatches_sequences
jupyter-notebook

run HPatches-Sequences-Matching-Benchmark.ipynb

Training

AWDesc-CA

Download dataset: https://drive.google.com/file/d/1Uz0hVFPxWsE71V77kXZ973iY2GuXC20b/view?usp=sharing

Set the dataset path in the configuration file configs/AWDesc_train.yaml

mega_image_dir:  /data/Mega_train/image   #images
mega_keypoint_dir:  /data/Mega_train/keypoint #keypoints
mega_despoint_dir:  /data/Mega_train/despoint #descriptor correspondence points
python train.py --gpus 0 --configs configs/AWDesc_train.yaml --indicator awdesc_ca

AWDesc-Tiny

Download dataset: https://pan.baidu.com/s/1-1rpNxYsNl5fVRKB6EWo4A?pwd=elcb

download code:elcb

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.8%
  • Shell 0.2%