forked from devpouya/FastSpectralClustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscikit_measure.py
127 lines (111 loc) · 4.54 KB
/
scikit_measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import subprocess
import random
import os
from sklearn.cluster import SpectralClustering, KMeans
from time import perf_counter
import subprocess
import os
import csv
# global settings
num_runs = 3
median_idx = 1
# # First Benchmark: growing dim
# test = "growing dim"
# output_filename = ""
# dataset_path = os.getcwd() + "/benchmarks/datasets/6c_5000n_growing_dim/"
# output_path = os.getcwd() + "/benchmarks/scikit/measurements/"
# k = 6
# n = 5000
#
# params = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
# second Benchmark: growing k
# test = "growing_k_"
# output_filename = ""
# dataset_path = os.getcwd() + "/benchmarks/datasets/2d_2500n_growing_k/"
# output_path = os.getcwd() + "/benchmarks/scikit/measurements/growing_k/"
#
# n = 2500
# # params = [2]
# params = [i for i in range(2, 100)]
# # Third Benchmark: growing n
test = "growing_n_"
output_filename = ""
dataset = "8c_300d_growing_n_normalized"
dataset_path = os.getcwd() + "/benchmarks/datasets/"+dataset+"/"
output_path = os.getcwd() + "/benchmarks/scikit/measurements/growing_n/"+dataset+"/"
k = 8 #??
dim = 300 #??
params = [n for n in range(100, 6100, 100)]
# global
directory = os.fsencode(str(dataset_path))
runtimes_median = []
elkan_runtimes_median = []
total_runtimes_median = []
def load_data(dataset_path, num_clusters):
f_input = open(dataset_path, "r")
data = f_input.read().split()
# dim = int(data[0])
# data = data[1:]
data_np = np.array(data).reshape(-1, num_clusters)
# data_np = np.array(data).reshape(-1, dim)
return data_np
for par in params:
print(test + " | parameter = " + str(par))
for file in sorted(os.listdir(directory)): # when generating data have just numbers for simplicity
filename = os.fsdecode(file)
if filename == str(par) + "_ev.txt":
# if filename == str(par) + "_ev.txt":
# compute NUM_RUNS times and get the median
runtimes = []
# runtimes2 = []
# runtimes3 = []
k = par
print("number of clusters : {}".format(k))
data_np = load_data(dataset_path + filename, k)
for i in range(0, num_runs):
# print(dataset_path + filename)
# print("data shape {}".format(data_np.shape))
# t1_start = perf_counter()
t1_graph = SpectralClustering(n_clusters=k, eigen_solver='arpack', n_components=k, random_state=30,
n_init=1, gamma=1.0, affinity='rbf', eigen_tol=1e-12,
assign_labels='kmeans', kernel_params=None, n_jobs=1).fit_get_graph_time(data_np)
# runtime = KMeans(n_clusters=k, init='k-means++', n_init=1, max_iter=1000, tol=0.00000001,
# precompute_distances=False, verbose=0, random_state=30, copy_x=True,
# n_jobs=1, algorithm='full').fit_get_runtime(data_np)
# print(labels)
# print(clustering_result.shape)
# t1_stop = perf_counter()
# print("total time: {}".format(t1_stop-t1_start))
runtimes.append(t1_graph)
# runtimes.append(runtime)
# runtimes3.append(t1_stop-t1_start)
# sort the arrays
runtimes.sort()
# runtimes2.sort()
# runtimes3.sort()
# adding to final list
runtimes_median.append(runtimes[median_idx])
# elkan_runtimes_median.append(runtimes2[median_idx])
# total_runtimes_median.append(runtimes3[median_idx])
print("runtime graph part: " + str(runtimes[median_idx]) +" (sec)")
# print("runtime elkan no_eig: " + str(runtimes2[median_idx]) + " (sec)")
# print("runtime lloyd with_eig: " + str(runtimes3[median_idx]) + " (sec)")
# print("runtime eig: " + str(runtimes3[median_idx] - runtimes[median_idx]) + " (sec)")
save_path = str(output_path) + test + "_graph"
print("saved at :{}".format(save_path))
with open(save_path, 'w') as f:
writer = csv.writer(f, delimiter='\t')
writer.writerows(zip(params, runtimes_median))
#
# with open(str(output_path) + "_elkan_runtime_no_eig", 'w') as f:
# writer = csv.writer(f, delimiter='\t')
# writer.writerows(zip(params, elkan_runtimes_median))
#
# with open(str(output_path) + "_total_lloyd_runtime_with_eig", 'w') as f:
# writer = csv.writer(f, delimiter='\t')
# writer.writerows(zip(params, total_runtimes_median))
#
#