Unsupervised crack detection and more for microscpopic metal surfaces. Uses no deep/machine learning but just image processing from opencv.
Cracke has the following components:
- Median Blur Filtering
- Canny Edge Detection
- Morphological Segmentation
- Bounding Box Generation
- Approximate Crack Length 2 Use Paris Equation for crack propagation
- Compare with standard loading for a given material
- Status of the material
- Analysis of the image
- Estimate crack start and cause
- Generate report
Contains the flask app code for the HackaTUM 2019 demo presentation.
Coontains code for the ionic app.
python dependencies - see 'requirements.txt' other dependencies: ionic.
- go to /app
ionic cordova run browser
for server go to /server python run.py
HackaTUM Presentation: Click Here.
Devpost Link: Click Here
PS: The entire pipeline was coded in a day for the hackathon and therefore is crude and raw and at times even unintelligeble. We'll try to fix bugs and clean up the code as much as possible. In the meanwhile please also feel free to fork and contribute to our codebase.
- Aadhithya Sankar github, linkedin
- Abinav Ravi Venkatakrishnan github, linkedin
- Jyotirmay Senapati github, linkedin
- Abhijeet Parida github, linkedin
HackaTUM 2019