Skip to content

Commit

Permalink
Broken PSS implementation
Browse files Browse the repository at this point in the history
  • Loading branch information
acabey committed Jan 15, 2020
2 parents 9f1d596 + f74fb7f commit 1200d42
Showing 1 changed file with 395 additions and 0 deletions.
395 changes: 395 additions & 0 deletions lib/xecrypt_pss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,395 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <[email protected]>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

from Crypto.Cipher import ARC4 as RC4
from Crypto.Hash import SHA1

from Crypto.Signature.pss import PSS_SigScheme

from Crypto.Util.py3compat import bchr, bord, iter_range
import Crypto.Util.number
from Crypto.Util.number import (ceil_div,
long_to_bytes,
bytes_to_long
)
from Crypto.Util.strxor import strxor
from Crypto import Random


class XeCrypt_Sig(object):
"""
typedef struct { // [BnQwBe]
QWORD aqwPad[28]; // [data + 0x00] Padding
BYTE bOne; // [data + 0xE0] 0x01
BYTE abSalt[10]; // [data + 0xE1] Salt
BYTE abHash[20]; // [data + 0xEB] Hash
BYTE bEnd; // [data + 0xFF] 0xBC
} XECRYPT_SIG;
"""
STRUCT_SIZE = 0x100

def __init__(self, salt: bytes, hash: bytes, pad: bytes = None):
self.pad = pad if pad else bytes(28 * 8)
self.salt = salt[0:0xA]
self.hash = hash[0:0x14]

@classmethod
def from_bytes(cls, raw_bytes: bytes):
return XeCrypt_Sig(pad=raw_bytes[0x0:0xE0], salt=raw_bytes[0xE1:0xE1 + 0xA], hash=raw_bytes[0xEB: 0xEB + 0x14])

def format(self) -> bytes:
"""
Return in struct format
:return:
"""
return self.pad + bytes([0x01]) + self.salt + self.hash + bytes([0xBC])


class PRNG(object):

def __init__(self, stream):
self.stream = stream
self.idx = 0

def __call__(self, rnd_size):
result = self.stream[self.idx:self.idx + rnd_size]
self.idx += rnd_size
return result


class XeCrypt_PSS_SigScheme(PSS_SigScheme):
"""A signature object for ``RSASSA-PSS``.
Do not instantiate directly.
Use :func:`Crypto.Signature.pss.new`.
"""

def __init__(self, key, mgfunc, saltLen, randfunc):
"""Initialize this PKCS#1 PSS signature scheme object.
:Parameters:
key : an RSA key object
If a private half is given, both signature and
verification are possible.
If a public half is given, only verification is possible.
mgfunc : callable
A mask generation function that accepts two parameters:
a string to use as seed, and the lenth of the mask to
generate, in bytes.
saltLen : integer
Length of the salt, in bytes.
randfunc : callable
A function that returns random bytes.
"""
super(XeCrypt_PSS_SigScheme).__init__(key, mgfunc, saltLen, randfunc)

def XeCryptBnQwBeSigFormat(self, hash_input: bytes, salt: bytes) -> XeCrypt_Sig:
"""
Export 357
Generates PKCS #1 RSASSA-PSS signature using SHA1 for hashing and RC4 as a type of MGF
MGF deviates from PKCS specifcation
void XeCryptBnQwBeSigFormat(XeCrypt_PSS_Sig* output, const u8* pHash, const u8* pSalt);
:param hash_input: 20 byte digest
:param salt: 10 byte arbitrary data
:param key: implements logic using pycryptodome PSS_SigScheme object
:return: bytes representing XeCrypt_PSS_Sig Struct
"""
raise NotImplementedError('PSS crypto implementation is broken')
#return _EMSA_PSS_ENCODE(hash_input, key.rsa.size_in_bits(), _randfunc, mgf, sLen)

def XeCryptBnQwBeSigCreate(self, hash_input: bytes, salt: bytes) -> bytes:
"""
Export 357
Generates PKCS #1 RSASSA-PSS signature using SHA1 for hashing and RC4 as a type of MGF
MGF deviates from PKCS specifcation
:param hash_input: 20 byte digest
:param salt: 10 byte arbitrary data
:return: bytes representing XeCrypt_PSS_Sig Struct
"""
if not (self.cqw == 0x00000020):
raise ValueError('Invalid cqw')

if not (self.dwPubExp == 0x00010001 or key.dwPubExp == 0x00000011):
raise ValueError('Invalid public exponent')

output = bytearray(0x100)
output[0:0xE0] = [0] * 0xE0 # Zero out first 0xE0 bytes
output[0xE0] = 0x1
output[0xE1:0xE1 + 0xA] = salt # Copy salt into output starting at 0xE1
output[0xFF] = 0xBC

sha_ctx = SHA1.new()
sha_ctx.update(output[0:8])
sha_ctx.update(hash_input[0:0x14])
sha_ctx.update(salt[0:0xA])

hash = sha_ctx.digest() # Re-assign, does not change value in place
output[0xEB: 0xEB + 0x14] = hash

rc4_ctx = RC4.new(hash)

hash_obj = SHA1.new(hash)
mgf = lambda x, y: rc4_ctx.encrypt(x[0:y])
rand_func = PRNG(salt)
# pss_obj = xecrypt_pss.new(key.rsa, mask_func=mgf, salt_bytes=len(salt), rand_func=rand_func)

return self.sign(hash_obj)


def MGF1(mgfSeed, maskLen, hash_gen):
"""Mask Generation Function, described in `B.2.1 of RFC8017
<https://tools.ietf.org/html/rfc8017>`_.
:param mfgSeed:
seed from which the mask is generated
:type mfgSeed: byte string
:param maskLen:
intended length in bytes of the mask
:type maskLen: integer
:param hash_gen:
A module or a hash object from :mod:`Crypto.Hash`
:type hash_object:
:return: the mask, as a *byte string*
"""

T = b""
for counter in iter_range(ceil_div(maskLen, hash_gen.digest_size)):
c = long_to_bytes(counter, 4)
hobj = hash_gen.new()
hobj.update(mgfSeed + c)
T = T + hobj.digest()
assert(len(T) >= maskLen)
return T[:maskLen]


def _EMSA_PSS_ENCODE(mhash, emBits, randFunc, mgf, sLen):
r"""
Implement the ``EMSA-PSS-ENCODE`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.1).
The original ``EMSA-PSS-ENCODE`` actually accepts the message ``M``
as input, and hash it internally. Here, we expect that the message
has already been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message being signed.
emBits : int
Maximum length of the final encoding, in bits.
randFunc : callable
An RNG function that accepts as only parameter an int, and returns
a string of random bytes, to be used as salt.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Return: An ``emLen`` byte long string that encodes the hash
(with ``emLen = \ceil(emBits/8)``).
:Raise ValueError:
When digest or salt length are too big.
"""

emLen = ceil_div(emBits, 8)

# Bitmask of digits that fill up
lmask = 0
for i in iter_range(8*emLen-emBits):
lmask = lmask >> 1 | 0x80

# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
raise ValueError("Digest or salt length are too long"
" for given key size.")
# Step 4
salt = randFunc(sLen)
# Step 5
m_prime = bchr(0)*8 + mhash.digest() + salt
# Step 6
h = mhash.new()
h.update(m_prime)
# Step 7
ps = bchr(0)*(emLen-sLen-mhash.digest_size-2)
# Step 8
db = ps + bchr(1) + salt
# Step 9
dbMask = mgf(h.digest(), emLen-mhash.digest_size-1) # Uses RC4 as an MGF
# Step 10
maskedDB = strxor(db, dbMask)
# Step 11
maskedDB = bchr(bord(maskedDB[0]) & ~lmask) + maskedDB[1:]
# Step 12
em = maskedDB + h.digest() + bchr(0xBC)
return em


def _EMSA_PSS_VERIFY(mhash, em, emBits, mgf, sLen):
"""
Implement the ``EMSA-PSS-VERIFY`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.2).
``EMSA-PSS-VERIFY`` actually accepts the message ``M`` as input,
and hash it internally. Here, we expect that the message has already
been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message to be verified.
em : string
The signature to verify, therefore proving that the sender really
signed the message that was received.
emBits : int
Length of the final encoding (em), in bits.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Raise ValueError:
When the encoding is inconsistent, or the digest or salt lengths
are too big.
"""

emLen = ceil_div(emBits, 8)

# Bitmask of digits that fill up
lmask = 0
for i in iter_range(8*emLen-emBits):
lmask = lmask >> 1 | 0x80

# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
raise ValueError("Incorrect signature")
# Step 4
if ord(em[-1:]) != 0xBC:
raise ValueError("Incorrect signature")
# Step 5
maskedDB = em[:emLen-mhash.digest_size-1]
h = em[emLen-mhash.digest_size-1:-1]
# Step 6
if lmask & bord(em[0]):
raise ValueError("Incorrect signature")
# Step 7
dbMask = mgf(h, emLen-mhash.digest_size-1)
# Step 8
db = strxor(maskedDB, dbMask)
# Step 9
db = bchr(bord(db[0]) & ~lmask) + db[1:]
# Step 10
if not db.startswith(bchr(0)*(emLen-mhash.digest_size-sLen-2) + bchr(1)):
raise ValueError("Incorrect signature")
# Step 11
if sLen > 0:
salt = db[-sLen:]
else:
salt = b""
# Step 12
m_prime = bchr(0)*8 + mhash.digest() + salt
# Step 13
hobj = mhash.new()
hobj.update(m_prime)
hp = hobj.digest()
# Step 14
if h != hp:
raise ValueError("Incorrect signature")


def new(rsa_key, **kwargs):
"""Create an object for making or verifying PKCS#1 PSS signatures.
:parameter rsa_key:
The RSA key to use for signing or verifying the message.
This is a :class:`Crypto.PublicKey.RSA` object.
Signing is only possible when ``rsa_key`` is a **private** RSA key.
:type rsa_key: RSA object
:Keyword Arguments:
* *mask_func* (``callable``) --
A function that returns the mask (as `bytes`).
It must accept two parameters: a seed (as `bytes`)
and the length of the data to return.
If not specified, it will be the function :func:`MGF1` defined in
`RFC8017 <https://tools.ietf.org/html/rfc8017#page-67>`_ and
combined with the same hash algorithm applied to the
message to sign or verify.
If you want to use a different function, for instance still :func:`MGF1`
but together with another hash, you can do::
from Crypto.Hash import SHA256
from Crypto.Signature.pss import MGF1
mgf = lambda x, y: MGF1(x, y, SHA256)
* *salt_bytes* (``integer``) --
Length of the salt, in bytes.
It is a value between 0 and ``emLen - hLen - 2``, where ``emLen``
is the size of the RSA modulus and ``hLen`` is the size of the digest
applied to the message to sign or verify.
The salt is generated internally, you don't need to provide it.
If not specified, the salt length will be ``hLen``.
If it is zero, the signature scheme becomes deterministic.
Note that in some implementations such as OpenSSL the default
salt length is ``emLen - hLen - 2`` (even though it is not more
secure than ``hLen``).
* *rand_func* (``callable``) --
A function that returns random ``bytes``, of the desired length.
The default is :func:`Crypto.Random.get_random_bytes`.
:return: a :class:`PSS_SigScheme` signature object
"""

mask_func = kwargs.pop("mask_func", None)
salt_len = kwargs.pop("salt_bytes", None)
rand_func = kwargs.pop("rand_func", None)
if rand_func is None:
rand_func = Random.get_random_bytes
if kwargs:
raise ValueError("Unknown keywords: " + str(kwargs.keys()))
return XeCrypt_PSS_SigScheme(rsa_key, mask_func, salt_len, rand_func)


0 comments on commit 1200d42

Please sign in to comment.