Skip to content

ai-compiler-study/flux-tinygrad-opt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

flux-tinygrad-opt

Objective

Try optimizing Blackforest's Flux.1 with tinygrad's optimization, especially on H100.

Flux model class is based on PR #6334, which can seamlessly load weights of official one, downloaded from huggingface.

Optim. methods include

  • RAW: The raw code.
  • HC: Hand-coded; usual optim. such as dead code elimination, loop unrolling, etc.
  • TC: Seems like NVIDIA's tensor cores optim. Only applied when applicable, else raw code.

  • BEAM: Beam search the kernel.
  • MCTS: MCTS the kernel.
  • [TODO-RL]: Utilize RL like AlphDev did for CPU.

[TODO-1] Reverse-engineer optimized IR back to high-level tinygrad code and benchmark with "torch compiled" original Flux, measured by torch profiler or torch.cuda.Event. Also, refer to this.

Result

Benchmark

Final result : total 592.40 ms, 60225 GFLOPS; the cumulative inference time for propagating through all kernels.

For each kernel, the best time across all optimization methods is selected. For example, in the table below, BEAM (594.451 ms) is chosen for kernel_X.

Flux's flow is broken down into 1,423 tinygrad kernels.


Additional results Performance when using a single optimization method exclusively.

Optimization Method Time (ms)
RAW 201654.093
HC 7989.641
TC 6317.517
BEAM 594.451
MCTS 825.108

(The raw result significantly differs from the values from Peter and Antonio, check.) => the time seems to be correct. tinygrad/tinygrad#6759

Caveat Couldn't solve TODO-1, therefore, the times(ms) and GFLOPS are measured within tinygrad's method. [TODO-2] Does tinygrad lookup hardware intrinsics? or actually measure the time? The runtime dispatcher returns execution time when called?

Run

(You should own resource enough for running Flux.1)

python main.py

You might also have to add path for tinygrad/extras and tinygrad/examples folders. e.g. in main.py:
import sys; sys.path.append('PATH/TO/tinygrad')

Prerequisites

pip install -r requirements.txt
apt install graphviz git-lfs

Example outputs

An optimized kernel

Block size-tuned kernel
#define INFINITY (__int_as_float(0x7f800000))
#define NAN (__int_as_float(0x7fffffff))
extern "C" __global__ void __launch_bounds__(64) r_2048_4_16_16(float* data0, const float* data1) {
  __shared__ float temp1[64];
  int gidx0 = blockIdx.x; /* 2048 */
  int lidx0 = threadIdx.x; /* 4 */
  int lidx1 = threadIdx.y; /* 16 */
  int alu0 = (lidx0*16);
  float acc0 = 0.0f;
  for (int ridx0 = 0; ridx0 < 16; ridx0++) {
    float val0 = data1[(gidx0*1024)+(lidx0*256)+lidx1+(ridx0*16)];
    acc0 = (acc0+val0);
  }
  temp1[alu0+lidx1] = acc0;
  __syncthreads();
  if (((bool)(lidx1)!=1)) {
    float acc1 = 0.0f;
    for (int ridx1 = 0; ridx1 < 16; ridx1++) {
      float val1 = temp1[alu0+ridx1];
      acc1 = (acc1+val1);
    }
    data0[(gidx0*4)+lidx0] = acc1;
  }
}

#define INFINITY (__int_as_float(0x7f800000))
#define NAN (__int_as_float(0x7fffffff))
extern "C" __global__ void __launch_bounds__(128) r_16_256_2_64_4(float* data0, const float* data1, const float* data2) {
  __shared__ float temp1[128];
  int gidx0 = blockIdx.x; /* 256 */
  int gidx1 = blockIdx.y; /* 16 */
  int lidx0 = threadIdx.x; /* 2 */
  int lidx1 = threadIdx.y; /* 64 */
  int alu0 = (lidx0*64);
  float val0 = data2[(gidx1*2)+lidx0];
  float acc0 = 0.0f;
  for (int ridx0 = 0; ridx0 < 4; ridx0++) {
    float val1 = data1[(gidx1*131072)+(gidx0*256)+(lidx0*65536)+(lidx1*4)+ridx0];
    float alu1 = (val1+(val0*(-1.0f)));
    acc0 = (acc0+(alu1*alu1));
  }
  temp1[alu0+lidx1] = acc0;
  __syncthreads();
  if (((bool)(lidx1)!=1)) {
    float acc1 = 0.0f;
    for (int ridx1 = 0; ridx1 < 64; ridx1++) {
      float val2 = temp1[alu0+ridx1];
      acc1 = (acc1+val2);
    }
    data0[(gidx1*512)+gidx0+(lidx0*256)] = acc1;
  }
}

Metrics by kernel

             kernel 818 r_2560_21504_3072                     [21504, 2560, 1]   [1, 1, 1]    takes 1862.52 ms,    182 GFLOPS -- RAW                                                                                                    
             kernel 818 r_80_448_8_16_768_4_3_4               [448, 80, 1]       [8, 16, 1]   takes   76.35 ms,   4431 GFLOPS -- HC                                                                                                     
             kernel 818 r_32_168_2_2_2_2_2_4_192_8_2_2_2_5_4  [168, 32, 1]       [16, 2, 4]   takes    8.21 ms,  41219 GFLOPS -- TC                                                                                                     
             kernel 818 r_192_40_2_2_2_2_2_192_8_2_2_2_4_7_2  [40, 192, 1]       [8, 2, 2]    takes    5.16 ms,  65530 GFLOPS -- BEAM                                                                                                   
             kernel 818 r_32_384_2_2_2_2_2_192_8_2_2_2_7_5    [384, 32, 1]       [8, 2, 2]    takes    5.77 ms,  58602 GFLOPS -- MCTS 

e.g. r_80_448_8_16_768_4_3_4, r: reduce, 80_448: global size 8_16: local size. [TODO-3] Clarify the output. Is this OpenCL context?

r is the reduction operations like sum, dot product.

Related code
@functools.cached_property
def name(self) -> str:
  # kernel name (before late upcast)
  name = ("r" if self.reduceop else ("C" if all(x.op in BUFFER_UOPS for x in self.ast.parents) else "E")) + \
               (f"{len(self.ast.src)}_" if len(self.ast.src) > 1 else "_") + \
               colored('_', 'BLACK').join([colored(str(x), c) for x,c in zip(self.full_shape, self.colors())])

  # name the function something unique
  Kernel.kernel_cnt[(function_name := to_function_name(name))] += 1
  suffix = f"{'n'+str(Kernel.kernel_cnt[function_name]-1)}" if Kernel.kernel_cnt[function_name] > 1 else ""
return name+colored(suffix, 'BLACK')
print(f"                 kernel {i:2d} {lin.name+' '*(37-ansilen(lin.name))} {str(prg.global_size):18s} {str(prg.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS -- {colored(nm, 'green') if lin is sorted_choices[0][2] else nm}")
 @property
  def global_dims(self) -> int: return self.first_reduce-self.local_dims

  # there's eight chunks of the shape
  # blue   -- global dims
  # cyan   -- local dims (warp ones first)
  #  *** self.first_reduce
  # green  -- reduce-local dims
  # white  -- reduce-late upcasted dim (self.upcast_in_mid_reduce_axes)
  # red    -- reduce loops
  #  *** self.upcasted
  # purple -- reduce upcasted
  # yellow -- normal upcasted dimensions
  def colors(self) -> List[str]:
    # first non local non reduce dims are global (blue)
    colors = ["blue"] * self.global_dims if not self.dont_use_locals else ["BLUE"] * self.global_dims
    # after global are local_dims; warp ones used in tensor cores must be closest to first_reduce (cyan)
    colors += ["cyan"] * self.local_dims
    # between first_reduce and first_reduce + group_for_reduces, they are either upcast mid reduce (white), or late upcasted (green)
    colors += ["white" if i in self.upcast_in_mid_reduce_axes else "green" for i in range(self.first_reduce, self.first_reduce + self.group_for_reduces)]  # noqa: E501
    # between first_reduce + group_for_reduces and upcasted, they are reduce (red)
    colors += ["red"] * (self.first_upcast - (self.first_reduce + self.group_for_reduces))
    # upcasted dimensions are reduce (magenta) or normal (yellow)
    colors += ["magenta" if self.full_shape[i] != self.sts[0].shape[i] else "yellow" for i in range(self.first_upcast, self.shape_len)]
    assert len(colors) == self.shape_len, "colors size mismatch"
    return colors

Background

Supported ops

https://github.com/tinygrad/tinygrad/blob/d1bae42d3527e265b2772e39e563cdbaea34592e/tinygrad/ops.py

About

Optimize Flux on tinygrad

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%