New: ACT tuning tips
TL;DR: if your ACT policy is jerky or pauses in the middle of an episode, just train for longer! Success rate and smoothness can improve way after loss plateaus.
Project Website: https://tonyzhaozh.github.io/aloha/
This repo contains the implementation of ACT, together with 2 simulated environments: Transfer Cube and Bimanual Insertion. You can train and evaluate ACT in sim or real. For real, you would also need to install ALOHA.
You can find all scripted/human demo for simulated environments here.
imitate_episodes.py
Train and Evaluate ACTpolicy.py
An adaptor for ACT policydetr
Model definitions of ACT, modified from DETRsim_env.py
Mujoco + DM_Control environments with joint space controlee_sim_env.py
Mujoco + DM_Control environments with EE space controlscripted_policy.py
Scripted policies for sim environmentsconstants.py
Constants shared across filesutils.py
Utils such as data loading and helper functionsvisualize_episodes.py
Save videos from a .hdf5 dataset
conda create -n aloha python=3.8.10
conda activate aloha
uv pip install torchvision
uv pip install torch
uv pip install pyquaternion
uv pip install pyyaml
uv pip install rospkg
uv pip install pexpect
uv pip install mujoco==2.3.7
uv pip install dm_control==1.0.14
uv pip install opencv-python
uv pip install matplotlib
uv pip install einops
uv pip install packaging
uv pip install h5py
uv pip install ipython
cd act/detr && uv pip install -e .
To set up a new terminal, run:
conda activate aloha
cd <path to act repo>
We use sim_transfer_cube_scripted
task in the examples below. Another option is sim_insertion_scripted
.
To generated 50 episodes of scripted data, run:
python3 record_sim_episodes.py \
--task_name sim_transfer_cube_scripted \
--dataset_dir <data save dir> \
--num_episodes 50
To can add the flag --onscreen_render
to see real-time rendering.
To visualize the episode after it is collected, run
python3 visualize_episodes.py --dataset_dir <data save dir> --episode_idx 0
To train ACT:
# Transfer Cube task
python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir <ckpt dir> \
--policy_class ACT --kl_weight 10 --chunk_size 100 --hidden_dim 512 --batch_size 8 --dim_feedforward 3200 \
--num_epochs 2000 --lr 1e-5 \
--seed 0
To evaluate the policy, run the same command but add --eval
. This loads the best validation checkpoint.
The success rate should be around 90% for transfer cube, and around 50% for insertion.
To enable temporal ensembling, add flag --temporal_agg
.
Videos will be saved to <ckpt_dir>
for each rollout.
You can also add --onscreen_render
to see real-time rendering during evaluation.
For real-world data where things can be harder to model, train for at least 5000 epochs or 3-4 times the length after the loss has plateaued. Please refer to tuning tips for more info.