Download the MVTec AD dataset from the following link:
The official website of the dataset is:
Learning of Convolutional Autoencoder for Anomaly Detection in MVTec AD Dataset up to 100 epochs.
Input arguments for training are as follows:
python train.py
--data-path <path_to_dataset>
--batch-size <batch_size>
--num-workers <number_of_workers>
--lr <learning_rate>
--epochs <number_of_epochs>
--device <device>
--n-save <num_of_images_per_class_to_save>
--emb-dim <embedding_dimension>
Default values used for training on an NVIDIA RTX 3080 + i9-14900k are:
python train.py
--data-path <path_to_dataset>
--batch-size 16
--num-workers 4
--lr 1e-3
--epochs 100
--device cuda
--n-save 5
--emb-dim 1024
- More experiments with Convolutional Autoencoder
- Evaluation on detection of anomalies
- The MVTec Anomaly Detection Dataset [Bergmann et al., in: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9584-9592, 2019]