Skip to content

alberto-trabacchin/MvTec-Anomaly-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MvTec-Anomaly-Detection

Dataset Download

Download the MVTec AD dataset from the following link:

MVTec AD Dataset

The official website of the dataset is:

MVTec Official AD Dataset

Learning of Convolutional Autoencoder

Learning of Convolutional Autoencoder for Anomaly Detection in MVTec AD Dataset up to 100 epochs.

Bottle Demo Can Demo Capsule Demo Transistor Demo
Hazelnut Demo Metal Nut Demo Pill Demo Screw Demo

Usage

Training

Input arguments for training are as follows:

python train.py 
--data-path <path_to_dataset> 
--batch-size <batch_size>
--num-workers <number_of_workers>
--lr <learning_rate>
--epochs <number_of_epochs>
--device <device>
--n-save <num_of_images_per_class_to_save>
--emb-dim <embedding_dimension>

Default values used for training on an NVIDIA RTX 3080 + i9-14900k are:

python train.py
--data-path <path_to_dataset>
--batch-size 16
--num-workers 4
--lr 1e-3
--epochs 100
--device cuda
--n-save 5
--emb-dim 1024

Future Work

  • More experiments with Convolutional Autoencoder
  • Evaluation on detection of anomalies

References

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages