-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2875 from CarryFun/add_MiniCPM_1.2b
Add MiniCPM-1.2b and MiniCPM-2.4b.
- Loading branch information
Showing
10 changed files
with
2,509 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
28 changes: 28 additions & 0 deletions
28
transformers/llm/export/llm_models/MiniCPM-1.2b/config.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
{ | ||
"architectures": [ | ||
"LlamaForCausalLM" | ||
], | ||
"auto_map": { | ||
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM" | ||
}, | ||
"bos_token_id": 1, | ||
"eos_token_id": 2, | ||
"hidden_act": "silu", | ||
"hidden_size": 1536, | ||
"initializer_range": 0.1, | ||
"intermediate_size": 3840, | ||
"max_position_embeddings": 4096, | ||
"model_type": "llama", | ||
"num_attention_heads": 24, | ||
"num_hidden_layers": 52, | ||
"num_key_value_heads": 8, | ||
"pad_token_id": 0, | ||
"pretraining_tp": 1, | ||
"rms_norm_eps": 1e-05, | ||
"rope_scaling": null, | ||
"tie_word_embeddings": false, | ||
"torch_dtype": "bfloat16", | ||
"transformers_version": "4.31.0.dev0", | ||
"use_cache": true, | ||
"vocab_size": 73440 | ||
} |
174 changes: 174 additions & 0 deletions
174
transformers/llm/export/llm_models/MiniCPM-1.2b/configuration_llama.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" LLaMA model configuration""" | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | ||
|
||
|
||
class LlamaConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA | ||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the LLaMA-7B. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 32000): | ||
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`LlamaModel`] | ||
hidden_size (`int`, *optional*, defaults to 4096): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 11008): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 32): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 32): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
num_key_value_heads (`int`, *optional*): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | ||
`num_attention_heads`. | ||
pretraining_tp (`int`, *optional*, defaults to `1`): | ||
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | ||
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | ||
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | ||
issue](https://github.com/pytorch/pytorch/issues/76232). | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to 2048): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
rms_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the rms normalization layers. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | ||
Whether to tie weight embeddings | ||
rope_scaling (`Dict`, *optional*): | ||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling | ||
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format | ||
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | ||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how | ||
these scaling strategies behave: | ||
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | ||
experimental feature, subject to breaking API changes in future versions. | ||
Example: | ||
```python | ||
>>> from transformers import LlamaModel, LlamaConfig | ||
>>> # Initializing a LLaMA llama-7b style configuration | ||
>>> configuration = LlamaConfig() | ||
>>> # Initializing a model from the llama-7b style configuration | ||
>>> model = LlamaModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
model_type = "llama" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=32000, | ||
hidden_size=4096, | ||
intermediate_size=11008, | ||
num_hidden_layers=32, | ||
num_attention_heads=32, | ||
num_key_value_heads=None, | ||
hidden_act="silu", | ||
max_position_embeddings=2048, | ||
initializer_range=0.02, | ||
rms_norm_eps=1e-6, | ||
use_cache=True, | ||
pad_token_id=0, | ||
bos_token_id=1, | ||
eos_token_id=2, | ||
pretraining_tp=1, | ||
tie_word_embeddings=False, | ||
rope_scaling=None, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.rms_norm_eps = rms_norm_eps | ||
self.pretraining_tp = pretraining_tp | ||
self.use_cache = use_cache | ||
self.rope_scaling = rope_scaling | ||
self._rope_scaling_validation() | ||
|
||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) | ||
|
||
def _rope_scaling_validation(self): | ||
""" | ||
Validate the `rope_scaling` configuration. | ||
""" | ||
if self.rope_scaling is None: | ||
return | ||
|
||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | ||
raise ValueError( | ||
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " | ||
f"got {self.rope_scaling}" | ||
) | ||
rope_scaling_type = self.rope_scaling.get("type", None) | ||
rope_scaling_factor = self.rope_scaling.get("factor", None) | ||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: | ||
raise ValueError( | ||
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | ||
) | ||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | ||
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") |
38 changes: 38 additions & 0 deletions
38
transformers/llm/export/llm_models/MiniCPM-1.2b/convert_minicpm_to_llama.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
import torch | ||
import math | ||
#torch.manual_seed(0) | ||
|
||
path = "path-to-MiniCPM-1B-sft-bf16" | ||
tokenizer = AutoTokenizer.from_pretrained(path) | ||
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, trust_remote_code=True) | ||
|
||
responds, history = model.chat(tokenizer, "山东省最高的山是哪座山, 它比黄山高还是矮?差距多少?", temperature=0.3, top_p=0.5) | ||
print(responds) | ||
|
||
|
||
state_dict = model.state_dict() | ||
print(state_dict.keys()) | ||
|
||
scale_emb = 12 | ||
dim_model_base = 256 | ||
scale_depth = 1.4 | ||
num_layers = 52 | ||
hidden_size = 1536 | ||
|
||
new_emb = state_dict["model.embed_tokens.weight"] * scale_emb | ||
state_dict["model.embed_tokens.weight"] = new_emb | ||
|
||
new_emb = state_dict["lm_head.weight"] / (hidden_size / dim_model_base) | ||
state_dict["lm_head.weight"] = new_emb | ||
|
||
for i in range(num_layers): | ||
attn_out_name = f"model.layers.{i}.self_attn.o_proj.weight" | ||
new_weight = state_dict[attn_out_name] * (scale_depth / math.sqrt(num_layers)) | ||
state_dict[attn_out_name] = new_weight | ||
|
||
ffn_down_proj_name = f"model.layers.{i}.mlp.down_proj.weight" | ||
new_weight = state_dict[ffn_down_proj_name] * (scale_depth / math.sqrt(num_layers)) | ||
state_dict[ffn_down_proj_name] = new_weight | ||
|
||
torch.save(state_dict, "pytorch_model_llama.bin") |
Oops, something went wrong.