Skip to content

Commit

Permalink
Merge pull request #2875 from CarryFun/add_MiniCPM_1.2b
Browse files Browse the repository at this point in the history
Add MiniCPM-1.2b and MiniCPM-2.4b.
  • Loading branch information
jxt1234 authored Jun 12, 2024
2 parents 6154466 + b7ad72d commit 226f1bc
Show file tree
Hide file tree
Showing 10 changed files with 2,509 additions and 0 deletions.
25 changes: 25 additions & 0 deletions transformers/llm/engine/include/llm.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -231,6 +231,31 @@ class Llama2_7b : public Llm {
virtual VARP gen_position_ids(int seq_len) override;
virtual bool is_stop(int token_id) override;
};

class MiniCPM_1_2b : public Llama2_7b {
public:
MiniCPM_1_2b() {
model_name_ = "MiniCPM_1_2b";
layer_nums_ = 52;
key_value_shape_ = {2, 1, 8, 0, 64};
hidden_size_ = 1536;
}
private:
virtual std::vector<int> tokenizer(const std::string& query) override;
};

class MiniCPM_2_4b : public Llama2_7b {
public:
MiniCPM_2_4b() {
model_name_ = "MiniCPM_1_2b";
layer_nums_ = 40;
key_value_shape_ = {2, 1, 36, 0, 64};
hidden_size_ = 2304;
}
private:
virtual std::vector<int> tokenizer(const std::string& query) override;
};

class Llama3_8b : public Llama2_7b {
public:
Llama3_8b() {
Expand Down
20 changes: 20 additions & 0 deletions transformers/llm/engine/src/llm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,10 @@ Llm* Llm::createLLM(const std::string& path, std::string model_type, int forward
} else if (model_type.find("llama3") != std::string::npos) {
llm = new Llama3_8b;
llm->model_name_ = "Llama3_8b";
} else if (model_type.find("MiniCPM_1_2b") != std::string::npos) {
llm = new MiniCPM_1_2b;
} else if (model_type.find("MiniCPM_2_4b") != std::string::npos) {
llm = new MiniCPM_2_4b;
}
if (!llm) {
std::cerr << "model type can't judge!" << std::endl;
Expand Down Expand Up @@ -789,6 +793,22 @@ bool Llama2_7b::is_stop(int token_id) {
return token_id == 2;
}

std::vector<int> MiniCPM_1_2b::tokenizer(const std::string& query) {
auto ids = tokenizer_encode(query);
// auto prompt = "<用户>" + query + "<AI>";
ids.insert(ids.begin(), {59396, 4194, 59388});
ids.insert(ids.end(), {59396, 10850, 59388});
return ids;
}

std::vector<int> MiniCPM_2_4b::tokenizer(const std::string& query) {
auto ids = tokenizer_encode(query);
// auto prompt = "<用户>" + query + "<AI>";
ids.insert(ids.begin(), {95396, 4194, 95388});
ids.insert(ids.end(), {95396, 10850, 95388});
return ids;
}

std::vector<int> Qwen2::tokenizer(const std::string& query) {
auto ids = tokenizer_encode(query);
// auto prompt = "<|im_start|>user\n" + query + "<|im_end|>\n<|im_start|>assistant\n";
Expand Down
2 changes: 2 additions & 0 deletions transformers/llm/export/llm_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -1206,6 +1206,8 @@ def export(self):
'TinyLlama-1_1B-Chat': Llama2_7b_Chat,
'Yi-6B-Chat': Llama2_7b_Chat,
'deepseek-llm-7b-chat': Llama2_7b_Chat,
'MiniCPM-1.2b': Llama2_7b_Chat,
'MiniCPM-2.4b': Llama2_7b_Chat,
'phi-2': phi_2,
'bge-large-zh': bge,
'lora': LoraModule
Expand Down
28 changes: 28 additions & 0 deletions transformers/llm/export/llm_models/MiniCPM-1.2b/config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
{
"architectures": [
"LlamaForCausalLM"
],
"auto_map": {
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
},
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 1536,
"initializer_range": 0.1,
"intermediate_size": 3840,
"max_position_embeddings": 4096,
"model_type": "llama",
"num_attention_heads": 24,
"num_hidden_layers": 52,
"num_key_value_heads": 8,
"pad_token_id": 0,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.31.0.dev0",
"use_cache": true,
"vocab_size": 73440
}
174 changes: 174 additions & 0 deletions transformers/llm/export/llm_models/MiniCPM-1.2b/configuration_llama.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LLaMA model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class LlamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LLaMA-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
pretraining_tp (`int`, *optional*, defaults to `1`):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
Example:
```python
>>> from transformers import LlamaModel, LlamaConfig
>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()
>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llama"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_scaling=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads

# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_scaling = rope_scaling
self._rope_scaling_validation()

super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return

if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import math
#torch.manual_seed(0)

path = "path-to-MiniCPM-1B-sft-bf16"
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, trust_remote_code=True)

responds, history = model.chat(tokenizer, "山东省最高的山是哪座山, 它比黄山高还是矮?差距多少?", temperature=0.3, top_p=0.5)
print(responds)


state_dict = model.state_dict()
print(state_dict.keys())

scale_emb = 12
dim_model_base = 256
scale_depth = 1.4
num_layers = 52
hidden_size = 1536

new_emb = state_dict["model.embed_tokens.weight"] * scale_emb
state_dict["model.embed_tokens.weight"] = new_emb

new_emb = state_dict["lm_head.weight"] / (hidden_size / dim_model_base)
state_dict["lm_head.weight"] = new_emb

for i in range(num_layers):
attn_out_name = f"model.layers.{i}.self_attn.o_proj.weight"
new_weight = state_dict[attn_out_name] * (scale_depth / math.sqrt(num_layers))
state_dict[attn_out_name] = new_weight

ffn_down_proj_name = f"model.layers.{i}.mlp.down_proj.weight"
new_weight = state_dict[ffn_down_proj_name] * (scale_depth / math.sqrt(num_layers))
state_dict[ffn_down_proj_name] = new_weight

torch.save(state_dict, "pytorch_model_llama.bin")
Loading

0 comments on commit 226f1bc

Please sign in to comment.