-
Notifications
You must be signed in to change notification settings - Fork 46
defaultdatabase
Database used to activate or de-activate the various steps of the analysis chain.
case: LcpK0spp
download:
alice:
activate: false
conversion:
mc:
activate: false
data:
activate: false
skimming:
mc:
activate: false
data:
activate: false
merging:
mc:
activate: false
data:
activate: false
mergingperiods:
mc:
activate: false
data:
activate: false
Choose the type of analysis to be performed by setting properly case
. There should be a corresponding database_ml_parameters_case.yaml.
Activate or de-activate the various steps for data and Monte Carlo productions: download
, conversion
, skimming
, merging
, mergingperiods
.
ml_study:
activate: false
doscancuts: false
applytodatamc: false
doroc: false
doboundary: false
docorrelation: false
docrossvalidation: false
dogridsearch: false
doimportance: false
dolearningcurve: false
dopca: false
dosignifopt: false
doefficiency: false
dotesting: false
dotraining: true
Configure the Machine Learning optimization part choosing the operations that have to be performed, e.g. training dotraining: true
, testing dotesting: true
, cross validation docrossvalidation: true
, ...
mlapplication:
data:
doapply: false
domergeapply: false
domergeapplyperiods: false
mc:
doapply: false
domergeapply: false
domergeapplyperiods: false
Apply the model to data and Monte Carlo attaching the ML probability value to each candidate.
analysis:
type: MBvspt
data:
histomass: true
mc:
histomass: true
efficiency: true
dofit: true
dojetstudies: false
doeff: true
docross: true
Analysis par. Choose the type
of analysis to be performed, e.g. vs pt, vs multiplicity, ... Enable creation of the invariant mass histograms and efficiency, perform fit to extract raw signal and calculate cross section.
systematics:
probvariation: false
Perform probability cut scan and evaluate systematic uncertainty.
validation:
data:
docreatehisto: false
mc:
docreatehisto: false
plotevents: false
Get number of events analysed and for normalization (taking into account correction due to primary vertex reconstruction efficiency).