Skip to content

allenai/wiqa-dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

wiqa-dataset

Code repo for EMNLP 2019 WIQA dataset paper.

Usage

First, set up a virtual environment like this:

virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

(You can also use Conda.)

Create a simple program retrieve.py like this:

from src.wiqa_wrapper import WIQADataPoint

wimd = WIQADataPoint.get_default_whatif_metadata()
sg = wimd.get_graph_for_id(graph_id="13")
print(sg.to_json_v1())

This program will read the What-If metadata (wimd), retrieve situation graph 13 (sg), and print a string representation in JSON format. To see the result, run it like this (in the virtual env):

% PYTHONPATH=. python retrieve.py
{"V": ["water is exposed to high heat", "water is not protected from high heat"], "Z": ["water is shielded from heat", ...

Running tests

Set up the virtual environment as above, then run the test like this:

PYTHONPATH=. 
pytest

Running Model

pip install -r model/requirements.txt
bash model/run_wiqa_classifer.sh

Note: comment out the --gpus and --accelerator arguments in the script for CPU training

About

Code repo for EMNLP 2019 WIQA dataset paper

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •