Skip to content

amaraashishmahatokushwaha/jetsonYolov5

Repository files navigation

<<<<<<< HEAD Running YoloV5 with TensorRT Engine on Jetson.

This repository contains step by step guide to build and convert YoloV5 model into a TensorRT engine on Jetson. This has been tested on Jetson Nano or Jetson Xavier

Please install Jetpack OS version 4.6 as mentioned by Nvidia and follow below steps. Please follow each steps exactly mentioned in the video links below :

Build YoloV5 TensorRT Engine on Jetson Nano: https://www.youtube.com/watch?v=ErWC3nBuV6k

Object Detection YoloV5 TensorRT Engine on Jetson Nano: https://www.youtube.com/watch?v=-Vu65N1NRWw

Jetson Xavier:

Install Libraries

Please install below libraries::

$ sudo apt-get update
$ sudo apt-get install -y liblapack-dev libblas-dev gfortran libfreetype6-dev libopenblas-base libopenmpi-dev libjpeg-dev zlib1g-dev
$ sudo apt-get install -y python3-pip

Install below python packages

Numpy comes pre installed with Jetpack, so make sure you uninstall it first and then confirm if it's uninstalled or not. Then install below packages:

$ numpy==1.19.0
$ pandas==0.22.0
$ Pillow==8.4.0
$ PyYAML==3.12
$ scipy==1.5.4
$ psutil
$ tqdm==4.64.1
$ imutils

Install PyCuda

We need to first export few paths

$ export PATH=/usr/local/cuda-10.2/bin${PATH:+:${PATH}}
$ export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH
$ python3 -m pip install pycuda --user

Install Seaborn

$ sudo apt install python3-seaborn

Install torch & torchvision

$ wget https://nvidia.box.com/shared/static/fjtbno0vpo676a25cgvuqc1wty0fkkg6.whl -O torch-1.10.0-cp36-cp36m-linux_aarch64.whl
$ pip3 install torch-1.10.0-cp36-cp36m-linux_aarch64.whl
$ git clone --branch v0.11.1 https://github.com/pytorch/vision torchvision
$ cd torchvision
$ sudo python3 setup.py install 

Not required but good library

sudo python3 -m pip install -U jetson-stats==3.1.4

This marks the installation of all the required libraries.


Generate wts file from pt file

Yolov5s.pt and Yolov5n.pt are already provided in the repo. But if you want you can download any other version of the yolov5 model. Then run below command to convert .pt file into .wts file

$ cd JetsonYoloV5
$ python3 gen_wts.py -w yolov5s.pt -o yolov5s.wts

Make

Create a build directory inside yolov5. Copy and paste generated wts file into build directory and run below commands. If using custom model, make sure to update kNumClas in yolov5/src/config.h

$ cd yolov5/
$ mkdir build
$ cd build
$ cp ../../yolov5s.wts .
$ cmake ..
$ make 

Build Engine file

$ ./yolov5_det -s yolov5s.wts yolov5s.engine s

Testing Engine file

$ ./yolov5_det -d yolov5s.engine ../images

This will do inferencing over images and output will be saved in build directory.


Python Object Detection

Use app.py to do inferencing on any video file or camera.

$ python3 app.py

If you have custom model, make sure to update categories as per your classes in yolovDet.py .

jetsonYolov5

run yolov5 on jetson nano using csi camera.

92d70c97b695f1e92e2143df4e33ea5ae0f89617

About

run yolov5 on jetson nano using csi camera.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published