Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: Implement subcell limiting for non-conservative systems #4

Closed
wants to merge 16 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 108 additions & 0 deletions examples/tree_2d_dgsem/elixir_mhd_shockcapturing_subcell.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@

using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the compressible ideal GLM-MHD equations

equations = IdealGlmMhdEquations2D(1.4)

"""
initial_condition_blast_wave(x, t, equations::IdealGlmMhdEquations2D)

An MHD blast wave modified from:
- Dominik Derigs, Gregor J. Gassner, Stefanie Walch & Andrew R. Winters (2018)
Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics
[doi: 10.1365/s13291-018-0178-9](https://doi.org/10.1365/s13291-018-0178-9)
This setup needs a positivity limiter for the density.
"""
function initial_condition_blast_wave(x, t, equations::IdealGlmMhdEquations2D)
# setup taken from Derigs et al. DMV article (2018)
# domain must be [-0.5, 0.5] x [-0.5, 0.5], γ = 1.4
r = sqrt(x[1]^2 + x[2]^2)

pmax = 10.0
pmin = 1.0
rhomax = 1.0
rhomin = 0.01
if r <= 0.09
p = pmax
rho = rhomax
elseif r >= 0.1
p = pmin
rho = rhomin
else
p = pmin + (0.1 - r) * (pmax - pmin) / 0.01
rho = rhomin + (0.1 - r) * (rhomax - rhomin) / 0.01
end
v1 = 0.0
v2 = 0.0
v3 = 0.0
B1 = 1.0/sqrt(4.0*pi)
B2 = 0.0
B3 = 0.0
psi = 0.0
return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3, psi), equations)
end
initial_condition = initial_condition_blast_wave

surface_flux = (flux_lax_friedrichs, flux_nonconservative_powell2)
volume_flux = (flux_derigs_etal, flux_nonconservative_powell2)
basis = LobattoLegendreBasis(3)

limiter_idp = SubcellLimiterIDP(equations, basis;
positivity_variables_cons=[1],
positivity_correction_factor=0.5)
volume_integral = VolumeIntegralSubcellLimiting(limiter_idp;
volume_flux_dg=volume_flux,
volume_flux_fv=surface_flux)
solver = DGSEM(basis, surface_flux, volume_integral)

coordinates_min = (-0.5, -0.5)
coordinates_max = ( 0.5, 0.5)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level=4,
n_cells_max=10_000)


semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)


###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.1)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval=analysis_interval)

alive_callback = AliveCallback(analysis_interval=analysis_interval)

save_solution = SaveSolutionCallback(interval=100,
save_initial_solution=true,
save_final_solution=true,
solution_variables=cons2prim)

cfl = 0.5
stepsize_callback = StepsizeCallback(cfl=cfl)

glm_speed_callback = GlmSpeedCallback(glm_scale=0.5, cfl=cfl)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback,
save_solution,
stepsize_callback,
glm_speed_callback)

###############################################################################
# run the simulation
stage_callbacks = (SubcellLimiterIDPCorrection(),)

sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks=stage_callbacks);
dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep=false, callback=callbacks);
summary_callback() # print the timer summary
4 changes: 2 additions & 2 deletions src/Trixi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ using RecipesBase: RecipesBase
using Requires: @require
using Static: Static, One, True, False
@reexport using StaticArrays: SVector
using StaticArrays: StaticArrays, MVector, MArray, SMatrix, @SMatrix
using StaticArrays: StaticArrays, MVector, MArray, SMatrix, @SMatrix, MMatrix
using StrideArrays: PtrArray, StrideArray, StaticInt
@reexport using StructArrays: StructArrays, StructArray
using TimerOutputs: TimerOutputs, @notimeit, TimerOutput, print_timer, reset_timer!
Expand Down Expand Up @@ -161,7 +161,7 @@ export GradientVariablesPrimitive, GradientVariablesEntropy
export flux, flux_central, flux_lax_friedrichs, flux_hll, flux_hllc, flux_hlle,
flux_godunov,
flux_chandrashekar, flux_ranocha, flux_derigs_etal, flux_hindenlang_gassner,
flux_nonconservative_powell,
flux_nonconservative_powell, flux_nonconservative_powell2,
flux_kennedy_gruber, flux_shima_etal, flux_ec,
flux_fjordholm_etal, flux_nonconservative_fjordholm_etal, flux_es_fjordholm_etal,
flux_wintermeyer_etal, flux_nonconservative_wintermeyer_etal,
Expand Down
10 changes: 5 additions & 5 deletions src/callbacks_stage/subcell_limiter_idp_correction_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

function perform_idp_correction!(u, dt, mesh::TreeMesh2D, equations, dg, cache)
@unpack inverse_weights = dg.basis
@unpack antidiffusive_flux1, antidiffusive_flux2 = cache.antidiffusive_fluxes
@unpack antidiffusive_flux1_L, antidiffusive_flux2_L, antidiffusive_flux1_R, antidiffusive_flux2_R = cache.antidiffusive_fluxes
@unpack alpha1, alpha2 = dg.volume_integral.limiter.cache.subcell_limiter_coefficients

@threaded for element in eachelement(dg, cache)
Expand All @@ -17,16 +17,16 @@ function perform_idp_correction!(u, dt, mesh::TreeMesh2D, equations, dg, cache)
for j in eachnode(dg), i in eachnode(dg)
# Note: antidiffusive_flux1[v, i, xi, element] = antidiffusive_flux2[v, xi, i, element] = 0 for all i in 1:nnodes and xi in {1, nnodes+1}
alpha_flux1 = (1 - alpha1[i, j, element]) *
get_node_vars(antidiffusive_flux1, equations, dg, i, j,
get_node_vars(antidiffusive_flux1_R, equations, dg, i, j,
element)
alpha_flux1_ip1 = (1 - alpha1[i + 1, j, element]) *
get_node_vars(antidiffusive_flux1, equations, dg, i + 1,
get_node_vars(antidiffusive_flux1_L, equations, dg, i + 1,
j, element)
alpha_flux2 = (1 - alpha2[i, j, element]) *
get_node_vars(antidiffusive_flux2, equations, dg, i, j,
get_node_vars(antidiffusive_flux2_R, equations, dg, i, j,
element)
alpha_flux2_jp1 = (1 - alpha2[i, j + 1, element]) *
get_node_vars(antidiffusive_flux2, equations, dg, i,
get_node_vars(antidiffusive_flux2_L, equations, dg, i,
j + 1, element)

for v in eachvariable(equations)
Expand Down
21 changes: 21 additions & 0 deletions src/equations/equations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,22 @@ where `x` specifies the coordinates, `t` is the current time, and `equation` is
struct BoundaryConditionNeumann{B}
boundary_normal_flux_function::B
end
"""
NonConservativeLocal()

Struct used for multiple dispatch on non-conservative flux functions in the format of "local * symmetric".
When the argument `nonconservative_type` is of type `NonConservativeLocal`,
the function returns the local part of the non-conservative term.
"""
struct NonConservativeLocal end
"""
NonConservativeSymmetric()

Struct used for multiple dispatch on non-conservative flux functions in the format of "local * symmetric".
When the argument `nonconservative_type` is of type `NonConservativeSymmetric`,
the function returns the symmetric part of the non-conservative term.
"""
struct NonConservativeSymmetric end
# set sensible default values that may be overwritten by specific equations
"""
have_nonconservative_terms(equations)
Expand All @@ -220,6 +235,12 @@ example of equations with nonconservative terms.
The return value will be `True()` or `False()` to allow dispatching on the return type.
"""
have_nonconservative_terms(::AbstractEquations) = False()
"""
nnoncons(equations)
Number of nonconservative terms for a particular equation. The default is 0 and
it must be defined for each nonconservative equation independently.
"""
nnoncons(::AbstractEquations) = 0
have_constant_speed(::AbstractEquations) = False()

default_analysis_errors(::AbstractEquations) = (:l2_error, :linf_error)
Expand Down
181 changes: 181 additions & 0 deletions src/equations/ideal_glm_mhd_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@ function IdealGlmMhdEquations2D(gamma; initial_c_h = convert(typeof(gamma), NaN)
end

have_nonconservative_terms(::IdealGlmMhdEquations2D) = True()
nnoncons(::IdealGlmMhdEquations2D) = 2

function varnames(::typeof(cons2cons), ::IdealGlmMhdEquations2D)
("rho", "rho_v1", "rho_v2", "rho_v3", "rho_e", "B1", "B2", "B3", "psi")
end
Expand Down Expand Up @@ -279,6 +281,185 @@ end
return f
end

"""
flux_nonconservative_powell2(u_ll, u_rr, orientation::Integer,
equations::IdealGlmMhdEquations2D)

Non-symmetric two-point flux discretizing the nonconservative (source) term of
Powell and the Galilean nonconservative term associated with the GLM multiplier
of the [`IdealGlmMhdEquations2D`](@ref).

This implementation uses a non-conservative term that can be written as the product
of local and symmetric parts. It is equivalent to the non-conservative flux of Bohm
et al. (`flux_nonconservative_powell`) for conforming meshes but it yields different
results on non-conforming meshes(!).
## References
- Rueda-Ramírez, Gassner (2023). A Flux-Differencing Formula for Split-Form Summation By Parts
Discretizations of Non-Conservative Systems. https://arxiv.org/pdf/2211.14009.pdf.
"""
@inline function flux_nonconservative_powell2(u_ll, u_rr, orientation::Integer,
equations::IdealGlmMhdEquations2D)
rho_ll, rho_v1_ll, rho_v2_ll, rho_v3_ll, rho_e_ll, B1_ll, B2_ll, B3_ll, psi_ll = u_ll
rho_rr, rho_v1_rr, rho_v2_rr, rho_v3_rr, rho_e_rr, B1_rr, B2_rr, B3_rr, psi_rr = u_rr

v1_ll = rho_v1_ll / rho_ll
v2_ll = rho_v2_ll / rho_ll
v3_ll = rho_v3_ll / rho_ll
v_dot_B_ll = v1_ll * B1_ll + v2_ll * B2_ll + v3_ll * B3_ll

# Powell nonconservative term: (0, B_1, B_2, B_3, v⋅B, v_1, v_2, v_3, 0)
# Galilean nonconservative term: (0, 0, 0, 0, ψ v_{1,2}, 0, 0, 0, v_{1,2})
psi_avg = (psi_ll + psi_rr) #* 0.5 # We remove the 0.5 because the flux is always multiplied by 0.5
if orientation == 1
B1_avg = (B1_ll + B1_rr) #* 0.5 # We remove the 0.5 because the flux is always multiplied by 0.5
f = SVector(0,
B1_ll * B1_avg,
B2_ll * B1_avg,
B3_ll * B1_avg,
v_dot_B_ll * B1_avg + v1_ll * psi_ll * psi_avg,
v1_ll * B1_avg,
v2_ll * B1_avg,
v3_ll * B1_avg,
v1_ll * psi_avg)
else # orientation == 2
B2_avg = (B2_ll + B2_rr) #* 0.5 # We remove the 0.5 because the flux is always multiplied by 0.5
f = SVector(0,
B1_ll * B2_avg,
B2_ll * B2_avg,
B3_ll * B2_avg,
v_dot_B_ll * B2_avg + v2_ll * psi_ll * psi_avg,
v1_ll * B2_avg,
v2_ll * B2_avg,
v3_ll * B2_avg,
v2_ll * psi_avg)
end

return f
end
"""
flux_nonconservative_powell2(u_ll, orientation::Integer,
equations::IdealGlmMhdEquations2D,
nonconservative_type::NonConservativeLocal,
noncons_term::Integer)

Local part of the Powell and GLM non-conservative terms. Needed for the calculation of
the non-conservative staggered "fluxes" for subcell limiting. See, e.g.,
- Rueda-Ramírez, Gassner (2023). A Flux-Differencing Formula for Split-Form Summation By Parts
Discretizations of Non-Conservative Systems. https://arxiv.org/pdf/2211.14009.pdf.
"""
@inline function flux_nonconservative_powell2(u_ll, orientation::Integer,
equations::IdealGlmMhdEquations2D,
nonconservative_type::NonConservativeLocal,
noncons_term::Integer)
rho_ll, rho_v1_ll, rho_v2_ll, rho_v3_ll, rho_e_ll, B1_ll, B2_ll, B3_ll, psi_ll = u_ll

v1_ll = rho_v1_ll / rho_ll
v2_ll = rho_v2_ll / rho_ll
v3_ll = rho_v3_ll / rho_ll
v_dot_B_ll = v1_ll * B1_ll + v2_ll * B2_ll + v3_ll * B3_ll

if noncons_term == 1
# Powell nonconservative term: (0, B_1, B_2, B_3, v⋅B, v_1, v_2, v_3, 0)
f = SVector(0,
B1_ll,
B2_ll,
B3_ll,
v_dot_B_ll,
v1_ll,
v2_ll,
v3_ll,
0)
else #noncons_term ==2
# Galilean nonconservative term: (0, 0, 0, 0, ψ v_{1,2}, 0, 0, 0, v_{1,2})
if orientation == 1
f = SVector(0,
0,
0,
0,
v1_ll * psi_ll,
0,
0,
0,
v1_ll)
else #orientation == 2
f = SVector(0,
0,
0,
0,
v2_ll * psi_ll,
0,
0,
0,
v2_ll)
end
end
return f
end
"""
flux_nonconservative_powell2(u_ll, orientation::Integer,
equations::IdealGlmMhdEquations2D,
nonconservative_type::NonConservativeSymmetric,
noncons_term::Integer)

Symmetric part of the Powell and GLM non-conservative terms. Needed for the calculation of
the non-conservative staggered "fluxes" for subcell limiting. See, e.g.,
- Rueda-Ramírez, Gassner (2023). A Flux-Differencing Formula for Split-Form Summation By Parts
Discretizations of Non-Conservative Systems. https://arxiv.org/pdf/2211.14009.pdf.
"""
@inline function flux_nonconservative_powell2(u_ll, u_rr, orientation::Integer,
equations::IdealGlmMhdEquations2D,
nonconservative_type::NonConservativeSymmetric,
noncons_term::Integer)
rho_ll, rho_v1_ll, rho_v2_ll, rho_v3_ll, rho_e_ll, B1_ll, B2_ll, B3_ll, psi_ll = u_ll
rho_rr, rho_v1_rr, rho_v2_rr, rho_v3_rr, rho_e_rr, B1_rr, B2_rr, B3_rr, psi_rr = u_rr

v1_ll = rho_v1_ll / rho_ll
v2_ll = rho_v2_ll / rho_ll
v3_ll = rho_v3_ll / rho_ll
v_dot_B_ll = v1_ll * B1_ll + v2_ll * B2_ll + v3_ll * B3_ll

if noncons_term == 1
# Powell nonconservative term: (0, B_1, B_2, B_3, v⋅B, v_1, v_2, v_3, 0)
if orientation == 1
B1_avg = (B1_ll + B1_rr)#* 0.5 # We remove the 0.5 because the flux is always multiplied by 0.5
f = SVector(0,
B1_avg,
B1_avg,
B1_avg,
B1_avg,
B1_avg,
B1_avg,
B1_avg,
0)
else # orientation == 2
B2_avg = (B2_ll + B2_rr)#* 0.5 # We remove the 0.5 because the flux is always multiplied by 0.5
f = SVector(0,
B2_avg,
B2_avg,
B2_avg,
B2_avg,
B2_avg,
B2_avg,
B2_avg,
0)
end
else #noncons_term == 2
# Galilean nonconservative term: (0, 0, 0, 0, ψ v_{1,2}, 0, 0, 0, v_{1,2})
psi_avg = (psi_ll + psi_rr)#* 0.5 # We remove the 0.5 because the flux is always multiplied by 0.5
f = SVector(0,
0,
0,
0,
psi_avg,
0,
0,
0,
psi_avg)
end

return f
end

"""
flux_derigs_etal(u_ll, u_rr, orientation, equations::IdealGlmMhdEquations2D)

Expand Down
Loading