-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d140627
commit 0df6626
Showing
2 changed files
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
*.aux | ||
*.fls | ||
*.out | ||
*.synctex.gz | ||
*.fdb_latexmk | ||
*.log | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
\documentclass[twocolumn]{scrartcl} | ||
|
||
\usepackage[utf8]{inputenc} | ||
\usepackage[T1]{fontenc} | ||
\usepackage[english]{babel} | ||
\usepackage[]{amsmath} | ||
\usepackage[]{amssymb} | ||
\usepackage[top=1.0cm,left=1.5cm,right=1.5cm,bottom=1.5cm]{geometry} | ||
\usepackage[]{graphicx} | ||
\usepackage[colorlinks=true, urlcolor=blue]{hyperref} | ||
|
||
|
||
\renewcommand\familydefault{\sfdefault} | ||
|
||
\title{Adhesion of membranes with competing specific and generic interactions} | ||
\subtitle{Handout companioning the seminar talk} | ||
\author{Andreas Kröpelin} | ||
\date{January 11, 2021} | ||
|
||
\begin{document} | ||
\maketitle | ||
\thispagestyle{empty} | ||
|
||
This talk is based on the paper of the same name by T.~R.~Weikl \textit{et al.} (DOI \texttt{10.1140/\allowbreak{}epje/\allowbreak{}i2002-10008-2}). | ||
Presentation notebook available \href{https://github.com/andreasKroepelin/membrane_adhesion}{on GitHub}. | ||
|
||
\subsection*{Goal} | ||
Find theoretical explanation for \emph{phase separation} into domains with small and large distance observed when a \emph{biomimetic} (\textit{i.e.} ``similar to what is found in nature'') membrane with adhesive sticker molecules comes into close contact with a surface/another membrane. | ||
|
||
\subsection*{Physical model} | ||
Describe membrane as \emph{discrete grid} ($\approx 6$ nm units). | ||
Each grid point $i$ can move vertically and has position $h_i$ and potentioally has an attached sticker molecule ($n_i = 1$) or not ($n_i = 0$). | ||
|
||
\subsection*{Crashcourse on Potentials} | ||
If particle has potential $V(x)$ at position $x$, it experiences a force $F(x) = -\frac{\mathrm{d}V(x)}{\mathrm{d}x}$. | ||
\textbf{Harmonic potential:} ``oscillation'', force: $-\text{const} \cdot x$, potential: $\frac12 \text{const} \cdot x^2$. | ||
\textbf{Linear potential:} ``fall'', force: $-\text{const}$, potential: $\text{const} \cdot x$. | ||
|
||
\subsection*{Three membrane interactions} | ||
\textbf{Elastic bending:} potential $\frac{\kappa}{2}(\Delta h)^2$ with Laplacian $\Delta h = \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2}$ (``local curvature''). | ||
\textbf{Generic interaction:} Second-order-approximation of Lennard-Jones potential, $\frac12 h^2$, where $h=0$ at minimum of potential. | ||
\textbf{Specific interaction:} Extended stickers constantly pull down, potential $\alpha \cdot h$, and have internal \emph{chemical potential} $\mu$, only relevant if $n_i = 1$. | ||
\textbf{Total energy (Hamiltonian):} | ||
\begin{align*} | ||
\mathcal{H}(h, n) = \sum_i \frac{\kappa}{2}(\Delta h_i)^2 + \frac12 h_i^2 + n_i \cdot (\alpha h_i - \mu) | ||
\end{align*} | ||
|
||
\subsection*{Partition function $ \mathcal{Z} $} | ||
Sum of all state probabilities, where each state with energy $E$ has probability proportional to $\exp(-\frac{1}{T} \cdot E)$ (Boltzmann distribution). \\ | ||
State of membrane is $h_i \in \mathbb{R}$ and $n_i \in \{0,1\}$ for each grid point $i = 1,\ldots,N$, so | ||
\begin{equation*} | ||
\resizebox{\hsize}{!}{ | ||
$\displaystyle | ||
\mathcal{Z} = \int \cdots \int \sum_{n_1 \in \{0,1\}} \cdots \sum_{n_N \in \{0,1\}} \exp \left(-\frac{1}{T} \mathcal{H}(h,n) \right) \; \mathrm{d}h_1 \cdots \mathrm{d}h_N. | ||
$ | ||
} | ||
\end{equation*} | ||
Evaluating sums over $n_i$ gives | ||
\begin{align*} | ||
\mathcal{Z} = \int \cdots \int \exp \left( -\frac{1}{T} \mathcal{H}^\ast(h) \right) \; \mathrm{d}h_1 \cdots \mathrm{d}h_N | ||
\end{align*} | ||
(\emph{independent of $n$!}), with | ||
\begin{align*} | ||
\mathcal{H}^\ast(h) = \sum_i \frac{\kappa}{2}(\Delta h_i)^2 + \frac12 h_i^2 + V^\ast(h_i) | ||
\end{align*} | ||
and | ||
\begin{align*} | ||
V^\ast(h) = -T \cdot \ln \left( 1 + \exp \left( -\frac{1}{T} \cdot (\alpha h - \mu) \right) \right) | ||
\end{align*} | ||
|
||
\subsection*{Stable states} | ||
\textbf{For rigid membrane ($\kappa$ large):} | ||
Neglect elastic term, potential for one grid point is effectively | ||
\begin{align*} | ||
V_\text{ef}(h) = \frac12 h^2 - \ln(1 + \exp(\mu - \alpha h)) | ||
\end{align*} | ||
$\longrightarrow$ one minimum for $\alpha \leq 2$, two minima for $\alpha > 2$, if $\mu = -\frac12 \alpha^2$, | ||
corresponding sticker concentration found as $-\frac{\partial V_\text{ef}}{\partial \mu} = \frac{\exp(\mu - \alpha h)}{1 + \exp(\mu - \alpha h)}$ | ||
$\longrightarrow$ \emph{phase separation} for strong enough adhesion force: sticker-rich, strong adhesion, small distance \emph{vs.} sticker-poor, weak adhesion, high distance. \\ | ||
\textbf{For flexible membrane ($\kappa$ small):} | ||
Similar phase separation only possible for larger $\alpha$, otherwise potential barrier too low. | ||
Find critical $\alpha$ by Monte Carlo sampling of membrane states (\textit{via} partition function) and analysing distribution of $h_i$. | ||
|
||
\end{document} |