Skip to content

Multi-Agent Reinforcement Learning Environment, evaluating implicit goal inference.

Notifications You must be signed in to change notification settings

andreyrisukhin/ColorGrid

Repository files navigation

ColorGrid

This repository contains the code, checkpoints, and environment trajectory visualizations for the paper ColorGrid: A Multi-Agent Environment for Goal Inference and Assistance. Andrey Risukhin Kavel Rao Ben Caffee Alan Fan, University of Washington.

  • ∗ and † denote equal contribution
  • Correspondence to Ben Caffee ([email protected]).

Installation

Clone the repository:

git clone https://github.com/andreyrisukhin/ColorGrid.git
cd ColorGrid
conda create -n color_grid python=3.12
conda activate color_grid
pip install -r requirements.txt

Usage:

  1. Download the pre-trained weights and place them into the project directory.

  2. To train a follower agent with a "warm-started" leader (pre-trained weight) run python run_ppo.py --run_name <run_name> --total_timesteps <time_steps> --frozen_leader True --warmstart_leader_path leader_iteration=39061.pth --num_envs 16 --num_steps_per_rollout 128 --save_data_iters 1000 --checkpoint_iters 1000 --ppo_update_epochs 4 --seed 0 --block_density 0.10 --goalinfo_loss_coef 0 --asymmetric --log_to_wandb False --use_lstm --positive_reward 2 --negative_reward 1

See run_ppo.py for a description on the run parameters and other files for running baselines, manually playtesting the environment, etc.

Contributing

Please feel free to make pull requests.

About

Multi-Agent Reinforcement Learning Environment, evaluating implicit goal inference.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •